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research conducted at Banco de México in order to promote the exchange and debate of ideas. The

views and conclusions presented in the Working Papers are exclusively of the authors and do not

necessarily reflect those of Banco de México.
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tamaño de sus activos.
Palabras Clave: Riesgo sistémico, redes financieras, sistemas de pagos.

*The authors would like to thank Pascual O’Dogherty, Juan Pablo Graf Noriega, David Margoĺın Schabes,
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assistance. This paper has also benefited from the comments of Carlos Lever Guzmán, Kimmo Soramäki,
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Introduction

Despite the importance of systemic risk in the international financial regulatory arena,
authorities have failed to reach an agreement on a common widely accepted definition
for this concept. The lack of a representative definition has been the main motivation
behind the wide range of proposals to study and measure systemic risk. In the search for a
structural framework to evaluate it, financial authorities and researchers have considered
important aspects, so that they have created a spectrum of possibilities to define systemic
risk, which has allowed them to dimension the complex phenomena we are dealing with.
Nevertheless, the clear disadvantage of having different approaches to study systemic risk
is the impossibility of comparisons among the results different methods provide. In this
sense, a common definition will give a structural framework to evaluate systemic risk in
a standard way and will allow us to manage it to a certain extent.

Among many methodological proposals, graph models (network theory) occupy a
preponderant place and this is reflected by numerous papers recently being published.
Moreover, most of the financial stability reports include a section on network models,
contagion, interconnectedness, etc. The concept of “too interconnected to fail” is widely
used by domestic and international financial authorities around the globe. This concept
is associated with the centrality (relevance) of a node in a network.

Network theory and models have been employed in economics and finance before their
recent popularity in systemic risk. Nowadays, there is an important body of literature
on network models in finance and economics and it would be impossible to give a full
account of all papers, but we can mention only the ones which we consider to be either
relevant or close to the purpose of this paper. In Nagurney (2003), the author introduces
some of the applications and lines of research, whereas in Allen and Babus (2008) the
authors discuss several aspects in finance, which benefit from the network treatment.
Finally, Goyal (2007), is the most comprehensive text on network economics.

Despite all the good work that has been done on financial networks, there is room for
improvement, in particular regarding empirical evidence of real exposures and payment
systems’ networks. In this work, some relevant measures for systemic risk measurement
and monitoring are proposed, beyond the well known topological metrics. Moreover, all
this empirical evidence is put into the systemic risk context, something which has not
been done comprehensively in the past, to the best of our knowledge.

Furthermore, there are some important underlying questions on the use of this ap-
proach to study systemic risk such as: Which network or networks should be used? Is the
network of interbank exposures the relevant network to determine systemic relevance? Is
the payment system flows network the one that should be used? How do we incorporate
the time dimension to study systemic relevance in financial networks?

Nevertheless, in order to be able to study the interconnections between the financial
institutions, relevant data is a crucial element. For instance, the data obtained to build
the payment system network is relatively easier to access by the authorities and regu-
lators, as generally the central banks are in charge of the management of Large Value
Payment Systems. However, this is not the case for the interbank exposures network.
There are only a few central banks which could have an opportunity to estimate the in-
terbank exposures network; but a lot has been written on the topology of the interbank
exposures network by using simulation or by making some strong assumptions.

The dynamics of financial networks is a fundamental aspect on the determination of
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systemic relevance by means of network models, which has not received adequate atten-
tion until now. A static understanding of the relevance of an institution in a network
dominates the ideas behind the new regulation, which tries to incorporate intercon-
nectedness for the determination of Global Systemically Important Banks (G-SIBs). In
contrast, some relevant findings are reported in this work on dynamic aspects of two well
recognized networks for the Mexican banking system: the payment system flows and the
interbank exposures networks. This study provides empirical evidence on the dynamics
of the different roles played by Mexican banks in such networks.

There are many relevant aspects that a network can reveal: the number of connections
between the nodes, the degree of connectivity among them, the relative relevance of a
node, the persistence of some of the links, etc. Nevertheless, the interpretation of results
vary according to the context. Depending on the network that is used to study the role
played by a node, different conclusions might be drawn. For example, in this work we
found that the interbank exposures network posses different connectivity to the payments
system flows network, with the latter being more intensively connected.

Another relevant finding in this work is that some nodes (banks) which play an impor-
tant role in the interbank exposures network (as lender or borrower), play less important
roles in the payments system network. On the other hand, there are some nodes which
would not be considered important by their size or their roles in the interbank exposures
network but they are important players in the payments system network. Moreover, we
provide empirical evidence on how the relevance of banks in the studied networks changes
with time as a consequence of an important external shock; namely, the bankruptcy of
Lehman Brothers. Furthermore, the proposed measure of interconnectedness captures
the dynamics of the connectivity relevance of a node in terms of low/high value pay-
ments or as lender/borrower in the payments system or the interbank exposures network
respectively.

Although, network theory has proved to be effective in the study of payment systems,
it is necessary to understand its limitations in the context of systemic risk. It is not
possible to determine the systemic relevance or the contribution to the systemic risk of
an institution by means of network theory alone, as some important components might
be ignored. Some relevant aspects, among many others, which allow us to identify its
systemic relevance are: the risk profile of the individual financial institutions, the assets
and liabilities structure of banks, and their funding behavior.

Moreover, most studies on systemic risk and networks use only the direct links be-
tween institutions and frequently indirect links are not considered. Although, we ac-
knowledge that it is not an easy task to include indirect links into the study of systemic
risk, more efforts must be made to incorporate such links as they represent relevant
sources of common shocks and contagion.

The rest of the paper is organized as follows: Section 1 introduces the literature of
network models in the context of systemic risk. Section 2 describes the measures that
will be used to describe the properties of the studied networks. Section 3 describes the
data used to build the payments system and the interbank exposures networks. Section
4 presents some relevant metrics for the interbank exposures and the payments networks;
and, Section 5 presents a centrality study for both networks. Finally, Section 6 concludes
and proposes future lines of research.
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1. Network models and systemic risk

Since the seminal paper by Allen and Gale (2000), network related models have been
present in the context of financial contagion and systemic risk. However, the topology of
real interbank exposures networks is far from the two topologies suggested in Allen and
Gale (2000). For example, Wells (2002) studies the UK interbank exposures network in
the context of systemic risk and Boss et al. (2004b) as well as Boss et al. (2004a) provide
some empirical data on the interbank exposures network of the Austrian banking system;
in Iori et al. (2005), the authors provide some empirical evidence on the topological
properties of the Italian Money Market. In Blavarg and Nimander (2002), the Danish
market flows are studied by analyzing two networks: the money market and the customer
transactions network.

The above-mentioned studies have analyzed the interbank exposures network with the
more general purpose of studying contagion and systemic risk. Nevertheless, as complete
information on the network of exposures is not easily available, most of the previously
mentioned works had to rely on a common assumption: the maximum entropy principle.
Unfortunately, this principle might be the cause of the underestimation of contagion, and
as a consequence, of systemic risk as has been clearly demonstrated in Mistrulli (2007).

Simulation of financial networks has been also applied to study contagion, as in Nier
et al. (2007) and Gai and Kapadia (2010). In both papers the authors use randomly
generated networks to study financial contagion. Random formation models use some
scale-free properties, which apparently interbank exposures networks exhibit, to generate
simulated networks.

There is branch of research in central banks which includes “network models” within
a wider simulation framework, as in Boss et al. (2006), Aikman et al. (2009), Alessandri
et al. (2009), Márquez-Diez-Canedo and Mart́ınez-Jaramillo (2009), Mart́ınez-Jaramillo
et al. (2010b), Mart́ınez-Jaramillo et al. (2010a), Lopez-Castañon et al. (2012), Gauthier
et al. (2010b), Gauthier et al. (2010a).

From an international perspective, in Espinosa-Vega and Solé (2010) the authors use
network theory to simulate credit and funding shocks to different financial systems. In
Minoiu and Reyes (2011) the authors study the network of global banking from 1978 to
2009. On a different approach, in Hoggarth et al. (2010) the authors study the propaga-
tion of the consequences of the previous international crisis on the international financial
system, and in Garratt et al. (2011) the authors study contagion in the international
financial network.

1.1. Payment systems

Network models in payment systems have been rather successful in describing relevant
aspects of the payment systems flows. The literature is vast, and it would be easy to miss
some relevant research2. However, as it is not our intention to provide a full review of
the literature, we will only give some references to the work we know until now. Among
such studies, one can find research that describes various payment systems around the

2We make our network analysis considering the size of the payment orders for small and large value
payments. A similar approach is used in Alexandrova-Kabadjova and Solis (2012), in which the authors
analyze the difference in the intraday liquidity management for large and small value payments by
studying different sets of payment transactions, divided according to their value.
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world: Soramäki et al. (2006), Bech and Atalay (2008), Becher et al. (2008), Rordam
and Bech (2008), Pröpper et al. (2008), Wetherilt et al. (2010).

1.2. Network formation models

As a consequence of the difficulties of finding the relevant data to determine the
network of exposures, financial network theory has been forced to use either strong
assumptions (like maximum entropy) or to resort to different theories and tools, like
random graphs (see Erdös and Rényi (1959)) or scale free networks (see Barabási and
Albert (1999)). Random graphs are important because most network formation models
are based on variations of random graphs. On the other hand, scale-free networks can be
described in a simplistic way as networks in which the distribution of the nodes’ degree
follows a power law distribution3. Scale-free networks have become a popular subject
of study as many of the well-known networks possess this property (for example, the
WWW, the Wikipedia and the citation networks, among many others).

In the context of systemic risk, the financial network has been described as a robust-
yet-fragile structure because of this scale-free property. In the occurrence of random
shocks, this property of the high connectivity of only a few nodes and the low con-
nectivity of most would result in the situation that a random shock would affect low-
connectivity nodes with high probability; therefore, the structure is robust. However, if
the random shock affects one or few highly connected nodes, the network would suffer
major disruption; therefore, the structure is fragile.

Despite the usefulness of the network-formation models, we believe that modeling the
interbank network of exposures by means of random graphs is not appropriate because
relationships in such networks are created for strategic reasons and are also determined
by other relevant factors like the abundance or scarcity of liquidity. There are many
relevant aspects in the context of systemic risk which might not be captured by such
generative models as will be shown later.

2. Notation and measures

A graph is an ordered pair G = (V,E) where V is the set of vertices and E is the set
of edges which is a set of unordered pairs of V. Sometimes, in order to be explicit, this
object can be called a simple graph or undirected graph. On the other hand, a directed
graph or digraph is a graph D = (N,A) where N is the set of nodes and A is the set of
arcs in which A is a set of ordered pairs of nodes. In digraphs, the order of nodes in the
definition of an arc is important and usually represents a relationship in which direction
is relevant.

A weighted graph can be described as a graph with weights, w(e), assigned to each
edge, e. A weighted digraph can be defined as a directed graph with weights, w(a),
assigned to each one of the arcs, a.

3This means that the fraction p(d) of vertices with degree d satisfies:

p(d) =
d−η

ζ(η, dmin)
, d ≥ dmin η > 0 (1)

in which ζ(η, dmin) =
∑∞
d=dmin

d−η is known as the generalized Riemann Zeta Function.
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The terms “weighted graph” and “weighted digraph” have been used as synonyms
with the term “network”, although this is not fully accurate.In the past, networks have
been used for optimization problems like the maximum flow problem, the traveling sales-
man problem, etc. In particular, in finance there has been widespread use of the term
“network” to refer to weighted graphs or weighted digraphs, and we follow the same
convention in this paper.

In addition to the representation of graphs useful for exploratory purposes, there
exists a matrix representation which is often used for the storage of such structures and
for the implementation of algorithms. Such representations are the adjacency matrix
and the weighted matrix. The adjacency matrix, A, represents the existence or absence
of an edge or arc in a graph or digraph. The entries of such a matrix, aij , represent the
existence of a relationship between nodes i and j. If the modeled relationship does not
exist between nodes i and j, then aij = 0. Otherwise, aij = 1.

The weighted adjacency lending matrix, WL, entries wL
ij represent the weight (cost,

flow, exposure) from bank i to bank j. In a similar fashion, we define the weighted
adjacency borrowing matrix WB . By definition, the following equality holds: WL =
(WB)T . We also define the weighted adjacency matrix, W , as WL + WB , its entries,
wij , represent the weight of the total existing relationship between nodes i and j.

There are two important concepts which will be used recurrently in the rest of the
paper: walks and paths. For a non-directed graph ,G, a walk is a sequence of vertex and
edges v0, e1, ..., vn−1, ek, vk, in which v0 = vk . A path is a walk in which no vertex and
no edge is repeated. For directed graphs, the concepts are similar but the edges have
direction (arcs).

The following sections will describe some of the metrics which are widely used to
describe several aspects of different types of graphs and digraphs.

2.1. Topological measures

The topological measures of a network describe its structural properties. The study
of network topology is very important in real life physical networks like the electric grid,
circuits, computer networks, etc. Two of the most simple, yet important, metrics in
graph and network models are the number of vertex (nodes) n = |V | and the number of
edges (arcs) m = |E|. These quantities give us a clear idea of the size of the network
and the density of the connections. Such simple quantities will be used to express many
other metrics and to calculate the computational complexity of the algorithms used to
solve particular problems.

2.1.1. Degree

The degree of a node in a network is a simple measure but a very useful one. This
measure captures the number of nodes that a node is connected to. The degree, d(i), of
a vertex, i, in a graph is defined as:

di =
∑

j∈N(i)

aij (2)

where N(i) is the set of neighbors of vertex i; that is, the set of vertices which have
an edge with vertex i.
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The inner degree, d−i , and the outer degree, d+
i , of a node, i, in a digraph are defined

as:

d−i =
∑

j∈N−(i)

aij and d+
i =

∑
j∈N+(i)

aij (3)

where N−(i) is the set of inner neighbors of vertex i, which is the set of nodes having
an arc ending in node i. N+(i) is the set of outer neighbors of vertex i, the set of nodes
which have an arc starting in node i.

2.1.2. Clustering coefficient

The clustering coefficient, ci, is a measure of the density of the connections around a
vertex i and is defined as:

ci =
2

di(di − 1)

∑
j,h

aijaihajh. (4)

The clustering coefficient indicates that if two vertices, which have a connection with a
third vertex, have a connection between them; that is, it indicates if they form a triangle.
The average clustering coefficient measures the density of triangles in the graph.

2.1.3. Reciprocity

The reciprocity in a directed graph, G, is the fraction of arcs in any direction for
which there exists an arc in the opposite direction. It is important to note that in a
directed graph, in general, aij 6= aji, and the reciprocity is defined as:

r =

∑
i∈V

∑
j∈N(i) aij1

(i,j)
Ω∑

i∈V
∑

j∈N(i) aij
(5)

in which Ω = {(i, j) ∈ V × V : aij = aji} and

1
(i,j)
Ω =

{
1 if (i, j) ∈ Ω,

0 if (i, j) /∈ Ω

is the indicator function over the Ω set.

2.1.4. Affinity

Affinity is a measure, which on the basis of the degree of a node, describes the type
of nodes to which such a node tends to have a link.

ai =
1

di

∑
j∈N (i)

dj (6)

If ai is increasing with di, then nodes with high-degree tend to have relationships
with nodes which possess similar degree. If ai decreases with di, then the majority of
the neighbors of high-degree nodes have lower degree. Conversely, nodes with low degree
tend to have relationships with high degree nodes.

This measure describes if the nodes in a network tend to have relationships with
nodes of similar degree or nodes with a different degree.

6



2.1.5. Completeness index

The completeness index of a graph is a measure of how close a graph is to the complete
graph. The complete graph has an index of 1, whereas the graph with no edges has an
index of 0. The closer the index is to 1, the closer the graph is to being fully connected.
The completeness index, C(G), of an undirected graph, G, is defined in the following
way:

C(G) =

∑
i

∑
j aij

n(n− 1)
. (7)

The completeness index for a directed graph is:

C(G) =

∑
i

∑
j aij

2n(n− 1)
. (8)

2.1.6. Components of a network

The sort of networks which can be observed in real life are very large, making it very
difficult to visualize. In this case, it is possible to partition the network into components.
Such a partition is going to be given by the connectivity properties of the nodes belonging
to each partition. In Dorogovstev et al. (2001) the author proposes to partition V in the
following way:

• The disconnected components (DC). These are the zero degree vertices or weakly
connected small components.

• The giant weakly connected component (GWCC) is the largest component in which
every pair of vertices is connected by a path .

The giant weakly connected component can also be partitioned in the following way:

• The giant strongly connected component (GSCC) or core is the largest component
in which, for each pair of vertices i y j, there exists a path from i to j and a path
from j to i.

• The giant out-component (GOUT) consists of the vertices which can be reached
from the GSCC by a path.

• The giant in-component (GIN) consists of the vertices from which the GSCC can
be reached by a path.

• The tendrils are the vertices which cannot reach the core and are unreachable from
it.

Given that, in the Mexican case, the networks representing the banking system are
pretty small, we will only make a distinction between the nodes which belong to the core
and the ones which do not. In this way we can distinguish from the banks which are
easily reachable and the ones which are not.
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Figure 1: The components of a network

2.2. Other measures

In addition to the well-known topological measures, other relevant measures in the
context of systemic risk will be described in this section. This set of measures is based
on the weights associated with the arcs. Their interpretation is straightforward; for
example, the strength of a node in the network can be interpreted as the intensity of its
interactions with all its counterparts. Centrality measures will be described in detail in
further sections, due to their relevance in the context of this paper.

2.2.1. Strength

The total strength of a node is a very simple measure but a very important one, and
can be interpreted as an intensity-of-interaction measure. This measure is even used as
a criteria to determine centrality in a network as will be explained later in the paper.
The strength, si, of a vertex in the network is defined as:

si =
∑

j∈N(i)

wij (9)

In addition to total strength, inner and outer strength are relevant measures because
they could be useful to determine if a bank plays a more important role as a lender or a
borrower, in the case of the interbank exposures network. The inner strength, sBi , and
the outer strength, sLi , of a node in a weighted digraph are defined as:

sBi =
∑

j∈N (i)

wB
ij and sLi =

∑
j∈N (i)

wL
ij (10)
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2.2.2. Flow

The flow of a node is a very relevant measure in the context of exposures networks;
such a measure can be used to characterize a node as a net lender or net borrower in
the network. This characterization in turn, can be used to take some actions in order to
manage systemic risk depending on the importance of the node in the network.

In the context of the interbank exposures network, the elements wB
ij (wL

ij) of the
borrowing and lending matrices express the exposures between bank i and bank j. The
flow between the banks i and j is defined as: fij = wL

ij − wB
ij , which is the net exposure

of bank i to bank j.
The total flow of a node is defined as follows:

fi =
∑

j∈N(i)

fij . (11)

In the context of exposures networks, if fi > 0 then the bank i is a net lender, whereas
if fi < 0 bank i can be considered as a net borrower.

2.2.3. Herfindahl-Hirschman Index (HHI)

The Herfindahl-Hirschman Index is commonly associated with competition and mar-
ket power. In our context, such an index will be used to describe the concentration of
lending or borrowing by individual nodes in the network. As we will see in some concrete
examples later, this index is relevant for measuring contagion transmission. For example,
two banks, A and B, are exposed to the same three counterparts each. Bank A has its
lending highly concentrated in one of its three counterparts, let’s say C. On the other
hand, bank B is lending in a less concentrated fashion. In this specific example, bank
A will suffer larger losses than bank B if bank C fails, something which might have an
impact on the transmission of contagion if the exposure of bank A to bank C is large
enough to cause its failure.

The Lending HHI is computed in the following way:

HHIL(i) =
∑

j∈N (i)

(
wL

ij∑
j w

L
ij

)2

. (12)

The Borrowing HHI can be calculated as follows:

HHIB(i) =
∑

j∈N (i)

(
wB

ij∑
j w

B
ij

)2

. (13)

2.2.4. Preference index

The interbank market is a very important vehicle for liquidity transmission and it is
very important to study the way in which banks lend to each other. The preference index
is proposed in Cocco et al. (2009) to measure the intensity of the interaction between
each pair of banks. Banks lend to each other for many different reasons but they prefer
to do so with some banks rather than others. Such a preference is important in particular
in times of stress, when liquidity dries up. Having a strong relationship with a particular
bank would mean that such a provision of funding would be available in times of stress,
depending on the severity of the liquidity shock.
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• Lending Preference Index (LPI). For each lender, L, and each borrower, B, the LPI
is computed as the ratio between the amount which L has lent to bank B and the
total amount which L has lent to all its counterparts, in the last k days4.

LPIL,B,t =

(
k∑

s=1

FL−→B
t−s

)
/

(
k∑

s=1

FL−→system
t−s

)
(14)

where FL−→B is the total amount which L has lent to B and FL−→system is the
total amount which L has lent to all its counterparts.

• Borrowing Preference Index (BPI). Analogously the BPI can be defined as:

BPIL,B,t =

(
k∑

s=1

FL−→B
t−s

)
/

(
k∑

s=1

F system−→B
t−s

)
(15)

If L is an important lender (borrower) for B the ratio should be close to 1.

2.3. Centrality measures

Centrality is a concept commonly used in social networks and it has been extensively
studied for several decades, as it has several relevant interpretations like power, influence,
independence, control, etc. One of the first attempts to characterize centrality measures
is Sabidussi (1966). In this paper the author establishes some criteria that a centrality
measure should hold. Additionally, in Freeman (1979) the author revises three different
types of node centrality (degree, betweenness and closeness centrality) from the perspec-
tive of social networks. More recently, Borgatti and Everett (2006) rightfully state that
the measures of centrality asses the involvement of the nodes on the walk structure of
the network and propose four classes of network centrality measures.

It is very important to put centrality measures into the right context. To apply
network theory concepts and measures blindly could result in wrong interpretations.
This is particularly important from the perspective of policy making. In the context
that we are interested in, there are numerous works which compute centrality indexes in
payment systems and interbank exposures networks.

Centrality measures offer the possibility of ranking the nodes to assign them a measure
of relevance in a network. The larger the centrality measure the greater importance
such a node has in a network. This is closely related to the determination of systemic
importance5 as one of the components to determine it is interconnectedness, which can
be translated into centrality. However, systemic importance and centrality should not
be used as synonyms, as systemic importance is a concept which involves more aspects
than interconnectedness alone.

In the context of financial and banking systems, borrowing from Henggeler-Muller
(2006), it is possible to say that a financial institution is important in a financial network
if it has the following characteristics:

4The authors in Cocco et al. (2009) propose to use the last 30 days.
5See BCBS (2011) for a description of the methodology
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• Possesses many linkages to other members of the network (degree)

• The total amount of its assets, liabilities or flow in the network is very large
(strength)

• Its failure could transmit contagion in a few steps (closeness)

• Its counterparts are considered also as relevant (eigenvector and PageRank)

• There are many paths which pass through it (betweenness)

We consider that each centrality measure provides an important element to determine
the relevance of a node in the network and, for that reason, we will combine them instead
of choosing one as the centrality measure for our networks.

Some of the most relevant research on centrality in financial networks is the following:
in Nacaskul (2010), the author proposes Entropic Eigenvector Centrality as a measure of
systemic relevance and tests the measure over a range of stylized network topologies. In
Saltoglu and Yenilmez (2010), the authors propose a modified version of the PageRank
algorithm for assigning systemic relevance to banks in Turkey and analyze it in different
periods of time before a financial crash.

2.3.1. Strength centrality

The strength of a node, v, as was seen previously in 2.2.1, is simply the sum of its
interbank assets and liabilities in the case of total strength:

CS(v) = sv. (16)

In the case of inner strength, it is the sum of its interbank total assets, and, in
the case of outer strength, it is the sum of its total interbank liabilities. To differentiate
between inner and outer strength is important, as we are interested in determining which
bank is lending (borrowing) the most in the network. Such differentiation is important
in the context of systemic risk because a bank can play a specific role in the network;
that is, a bank can be very important as a lender or as a borrower in the interbank
exposures network and it is important from the regulators’ perspective as the failure of
such institutions would have different repercussions depending on the role played in the
network. This measure is very easy to compute from the algorithmic point of view but
fails to consider the relevance of its counterparts and the number of possible affected
neighbors in the case that an institution fails.

2.3.2. Degree centrality

Degree centrality, as defined in (17), is one of the most simple measures of network
centrality. A node is more important in a network if it is connected to many other nodes,
as its failure would have an impact in many other participants. In addition to degree
centrality, it is possible to define out-degree centrality and in-degree centrality. One of
the most attractive characteristics of these centrality measures is that they are very cheap
to compute. One of the main criticisms of these types of measures is that they do not
consider the importance of the neighbors and the weight size. Clearly both factors are
important in determining the relevance of a bank in a network. For the purposes of this
study, degree centrality of vertex, v is defined as:
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CD(v) = dv. (17)

Although in other studies this measure is standardized, dividing it by the maximum
number of counterparts a bank may have (n− 1).

2.3.3. Betweenness centrality

Betweenness centrality, in social networks, is associated with being strategically lo-
cated on the communication paths of many other nodes in the network. A node with
high betweenness centrality would have an important influence on other nodes as it can
stop or distort the information that passes through it. This measure of centrality is par-
ticularly important in the payment system network. As in the case of the previous two
measures, it is possible to compute inner-betweenness centrality and outer-betweenness
centrality.

Let σij = σji denote the total number of shortest paths between i and j. And let
σij(v) be the total number of shortest paths between i and j that pass through vertex
v, then:

CB(v) =
∑

i 6=v 6=j∈V

σij(v)

σij
. (18)

The algorithm used to calculate this measure was proposed by Brandes (2001).

2.3.4. Closeness centrality

Closeness centrality has an interpretation of independence in social networks in terms
of communication control. A node with high closeness centrality would depend less on
other intermediary nodes to receive messages. In the context of systemic risk and financial
contagion, this measure can be associated with the capacity of a node to spread contagion,
as such a node is close to the rest of the network. It is defined as:

CC(v) =
∑

j∈V \{v}

1

dG(v, j)
. (19)

In which dG(v, j) denotes the length of the shortest path that joins v and j. It is also
possible to compute inner-closeness centrality and outer-closeness centrality.

2.3.5. Entropic Eigenvector Centrality (EEC)

Eigenvector Centrality was first proposed in Bonacich (1972) with further develop-
ment into Entropic Eigenvector Centrality by Nacaskul (2010). In Bonacich (1972), the
author proposed the eigenvector, e, of the adjacency matrix, A, associated to the largest
eigenvalue as the vector whose entry, i, is the centrality measure of node i.

λe = Ae (20)

This measure has the advantage that takes into consideration the centrality of the
neighbors to compute the centrality of a node. Additionally, the proposed Eigenvector
centrality can also be seen as a weighted sum of not only direct connections but indirect
connections of any length. Thus, it takes into account the entire pattern in the network.
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Nacaskul (2010) proposes to use the eigenvector (EEC) associated with the largest
eigenvalue of a matrix referred as P instead of the adjacency matrix. This matrix is the
weighted adjacency matrix, W , additionally weighted with the value of the entropy of
exposures of the corresponding vertex (see Appendix A). Entries pij of matrix P are
defined as:

pij =
(

1 +
τi

τmax

)
· wij (21)

in which τi is the entropy calculated over the rows of a normalized version of the
weighted adjacency matrix whose entries are wnorm

ij =
wij∑n

j=1 wij
:

τi = −
n∑

j=1

wnorm
ij ln(wnorm

ij ) ∀i ∈ {1, ..., n} (22)

and τmax is the maximum value possible for the entropy:

τmax = −
n∑

j=1

1

n
ln

(
1

n

)
= ln(n). (23)

In order to obtain strictly positive entries for the eigenvector, Nacaskul (2010) also
proposes to change each zero entry in W for some non-zero low value in equation (22).

2.3.6. PageRank (PR) centrality

PageRank centrality is based on Google’s algorithm proposed in Page et al. (1999),
which considers the World Wide Web (WWW) as a digraph. The importance of this
measure lies in the fact that unlike other centrality measures (degree, closeness, between-
ness, etc.) it considers the relevance of neighbors to determine the relevance of a node
in the network, as in the case of the entropic eigenvector centrality. PageRank is defined
in the following way:

PR(i) =
(1− d)

N
+ d

∑
j∈N−(i)

PR(j)

L(j)
(24)

where i ∈ V = {1, ..., n} is the set of nodes which represents the Internet sites and
L(u) is the number of links which depart from u (that is, its outer degree) and d is a
factor which the authors in Page (1997) recommend to set at 0.85.

Vector PR of n× 1 with entries PR(i) is the one which solves the equation

PR =
1− d
N

1 + dMPR (25)

where 1 is a column vector with dimension n with the entries all equal to one andM
is the matrix of n× n given by

Mij =

{
1/L(j) if there exists an arc from j to i

0 otherwise
(26)

If E is defined as the n × n matrix with all entries equal to one and
∑
i∈V

PR(i) = 1

we have:
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PR =

(
1− d
N

E + dM
)
PR =: M̂PR. (27)

Therefore, PR is the eigenvector of the matrix M̂ associated to the first eigenvalue.

Nevertheless, arcs on the WWW have no weight associated with them but in the inter-
bank exposures network and the payment system flows networks, the weights associated
with the arcs provide useful information. Therefore, weights should be incorporated in
the centrality algorithms in order to avoid losing information. In Yenilmez and Saltoglu
(2011) the authors suggest that the PageRank of each node should be multiplied by the
dominant weight. For example, if i has links with j, then the largest weight between
wij and wji should be used by the algorithm. In this way the centrality of a bank will
increase in the direction of its dominant weights.

PR(i) =



(1− d) + d
∑

j∈N (i)

PR(j)
wL

ji∑
z∈N (j)

wL
jz

 si wL
ji > wB

ji ,

(1− d) + d
∑

j∈N (i)

PR(j)
wB

ji∑
z∈N (j)

wB
jz

 si wB
ji > wL

ji ,

(1− d) + d
∑

j∈N (i)


PR(j)



wL
ji∑

z∈N (j)

wL
jz

+
wB

ji∑
z∈N (j)

wB
jz

2




si wL

ji = wB
ji.

(28)

2.3.7. A principal components unified measure of centrality

Given that we have observed that different centrality measures provide us with differ-
ent aspects of the relevance of a node in the network, it is important to preserve all the
information provided by such measures. Nevertheless, from the policy-making perspec-
tive, it is important to have only one measure of importance (centrality) in the network.
As a consequence, we propose a statistical technique called Principal Component Anal-
ysis (see Appendix B for a brief introduction) that provides us with a unique index of
centrality, incorporating the information of several centrality measures.

In the context of systemic risk and financial contagion Xj
i,t defines the centrality mea-

sure j of bank i at time t with i(t) ∈ {27, 28, . . . , 41}, j ∈ {CS , CD, CB , CC , EEC,PR}
and t ∈ {1, 2, . . . , 1500}.

In order to obtain a unique set of coefficients and forecasting ability we decided to
run principal components globally. The limitations of this approach are mentioned in
Elman (1990). On the other hand, to enhance precision, we ran principal components
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daily. Given that some centrality measures are highly correlated and to avoid numerical
instability, we ran principal components with six centrality measures and with three
measures (betweenness, closeness and strength). The decision to use these measures was
based on three criteria. The first was to use the least correlated variables. Then, it was
decided to take into account those measures that were more important in the context
of financial contagion. Lastly, it was decided to use those measures whose computation
was less computationally intensive. An alternative, possibly more robust, approach is
detailed in Voegtlin (2004).

3. Data

This section describes the data used to construct the daily networks of the interbank
exposures and the payment system flows. Even though, the data available for one of
the networks might be larger, so we decided to use the same time period for comparison
purposes.

3.1. The Mexican interbank exposures market

The Mexican central bank has daily data which can be used to calculate the matrix
of interbank exposures in the Mexican financial system from January 2005 onwards. The
period of time contemplated in this study goes from the 3rd of January 2005 to the 31st
of December 2010. Although currently there are 42 banks in the system, all the metrics
and studies reported will consider the evolution of the banking system; that is, we start
the study with 27 banks and finish it with 40, which is the number of active banks at
the end of 2010. The interbank exposures considered comprise all the possible deposits,
credits and loans, including credit lines as part of the interbank market. As is pointed
out in Graf et al. (2005), the assumption of maximum entropy in the distribution of the
interbank exposures is not realistic, at least not in the Mexican banking system.

Given the detail of the information from the interbank exposures network, it is pos-
sible to separate the data and to study the impact that different types of exposures
have on the properties of the total exposures network. The base case will be the net-
work described in the previous paragraph with a minor modification: FX exposures will
be eliminated for the banks which use the services provided by the Continuous Linked
Settlement (CLS) Bank6. The point at which the Mexican peso is included as a cur-
rency settled by the CLS changes some of the properties of the network. In particular,
it changes some of the individual measures of the banks which participate in the CLS.
This change in the structure of the network provides an interesting case on how a central
counterpart changes the structural properties of a network.

The second case studied is the network which includes all of the FX exposures. This
case is useful in order to understand the effect that the CLS had on the properties of the
network. We also analyzed the properties of the network without the FX exposures in
order to evaluate if the network changes only as a consequence of the Lehman Brothers
failure. This case is also important because it would otherwise be impossible to evaluate
the impact that Lehman had on the interbank exposures network as the Mexican peso
entered the CLS approximately one month before the Lehman failure.

6The settlement of FX operations by means of the CLS eliminates completely the FX settlement risk.
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3.2. The Mexican Large Value Payments System

Payment systems have evolved over time as modern economies are becoming more
dependent on the services they provide. The technology and the need for international
cooperation have been the main factors driving the changes observed in many aspects of
the payments service industry. Ongoing innovation is likely to diversify payment types
competing on consumer service level, whereas efficiency and cost reduction could be the
main reasons for integration of payments processing and settlement. It is possible that
in the near future real-time high-value payments, low-value electronic payments, and
even card payments will be settled together. To achieve this, settlement engines need to
incorporate a Liquidity Saving Mechanism, which allows settlement of a large number of
low-value payments with a minimum pressure on intraday liquidity consumption.

In Mexico, the Payments System that processes and settles large-value payments in
real time is named SPEI and is operated by the Mexican central bank. It started to
operate on the 13th of August 2004 and it has integrated a Liquidity Saving Mechanism
(LSM), which allows continuous netting of payments during the day. SPEI settles pay-
ment orders in real time, charging less than a 0.05 USD per payment. It processes, on
average, around 300,000 operations daily. More than 80% of the transactions are pay-
ments with a value lower than 10,000 USD and only 1.3% of the transactions are above
1,000,000 USD.

In this paper, we use daily information from all the payments which are settled by
SPEI. We build the network by accumulating all the payments in one day between each
pair of banks in both directions. Entry wij of such a matrix is the accumulated sum
of all the payments which took place from bank i to bank j in a particular day. It is
important to note that, in general, wij 6= wji. In the case of the payments network we
will have a daily network for each day in which SPEI operated as is the case for the
interbank exposures network. We will cover the same period, from 2005 to 2010, in order
to be able to compare some of the characteristics of both networks.

In the case of SPEI, it is possible to separate the payments by value in order to
construct different types of networks. This means that it is possible for us to study the
SPEI network by using the total value during the day, the total value only considering
payments with value above a certain threshold, and the total value considering payments
with value below this threshold. This separation is important in order to compare the
properties of the network of total payments along with the network of large-value and low-
value payments. This separation of payments would reveal the role and the importance
of a bank depending on the type of payment (low-value vs. large-value). The threshold
value that we use to separate low-value and large-value payments is 10,000,000 MXN.

4. Global and individual measures

In this section, we will report some of the measures developed in this study. In order
to report them in an orderly fashion we will split them first by the level in which they
are computed: global vs. individual. The next level of organization is by the type of
network: payments vs. interbank exposures. The global measures describe the network
as a whole, whereas the individual measures describe banks individually.
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(a) January 3, 2005 (b) July 27, 2010

Figure 2: The payment system flows network on two different dates.

4.1. Global measures

Here we report some of the global measures of the two objects of study: the SPEI and
the interbank exposures networks. Among such global measures we will find the volume,
the total number of arcs, the average degree and the completeness index. Figure 2 shows
the SPEI network on two different days: January 3, 2005 and July 27, 2010. From this
figure we can see that the connectivity of the network changed dramatically.

Figure 3 shows the base case of the interbank exposures network7 on two different
days: January 3, 2005 and December 31, 2010. From this figure we can see that despite
the incorporation of new banks in the banking systems, some of the newcomers did not
participate in this market, at least not every day.

4.1.1. Payments system

In Figures 4 and 5 we can see the evolution of the global measures for the SPEI’s
base case. In the figures we can see that the system’s usage experienced a big jump
at the beginning of 2005 and this is reflected in all measures. At the beginning of the
period of study, some of the series show big upward movements which are related to
the government’s payroll transfers. Such sudden changes start to disappear due to the
incorporation of more banks in the system. The black vertical line marks the date of
the failure of Lehman Bothers8, which apparently did not change some of this network’s
global measures. The daily number of arcs has an increasing trend which means that

7The figures here were created by using the Pajek software.
8This line will appear in several further graphs.
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(a) January 3, 2005 (b) December 31, 2010

Figure 3: The interbank exposures network on two different dates.

there are more lines of transfers between banks. This trend is also related to the incor-
poration of more banks in the system. The average degree suffers a decline as does the
completeness index. This is natural as the number of banks increases. The completeness
index is a more sensitive measure because the number of possible arcs increases dramat-
ically with the incorporation of new banks. The average clustering coefficient is large,
meaning that there is a tendency that a bank A is sending/receiving payments to/from
a bank B, and sending/receiving payments to/from another bank C, which is also send-
ing/receiving payments to/from bank B. This can be interpreted as a high degree of
circulation of payments in the system.

Table 1 shows some of the structural properties of three different SPEI networks:
large-value payments, low-value payments and the network which includes all payments
regardless of their value. From the table we can observe that the core of the large-value
network is smaller, the network is less complete, and the number-of-arcs measure is also
smaller than the other two networks, but the total volume of the network is much larger
than for the low-value network. Reciprocity in the three networks is the same, indicating
that there is a large reciprocity in the network. Summarizing, structurally speaking, the
low-value and large-value networks are different. We have a similar table considering the
number of operations instead of the value, but the results are quite similar to the ones
summarized in this table.

Figure 6 shows two graphs: (a) the evolution of the size of the core and (b) the
evolution of the relative clustering coefficient. From Figure 6(a), it is possible to observe
that, at the end of the period, almost every node in the network belongs to the core.
This fact means that the SPEI network is strongly connected in contrast to the inter-
bank exposures network. The relative clustering coefficient (Figure 6(b)) is obtained by
dividing the average clustering coefficient of the SPEI network by the average clustering
coefficient of the random graph with the same number of nodes and with the same aver-
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Figure 4: Evolution of the payment system network.
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Figure 5: Evolution of the payment system network.
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Mean Large Value Low Value Total
Core Size 30.8 33.0 34.2

Completeness Index 0.3 0.4 0.4
Average Degree 10.1 13.3 15.2

Reciprocity 0.8 0.8 0.8
Average Distance 1.7 1.6 1.5

Total Arcs 290.2 405.9 470.9
Average Strength* 24.0 1.24 25.2

Total Volume* 415.8 22.41 438.7

Table 1: Statistics of the SPEI network (quantities marked with * are expressed in millions).
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Figure 6: Evolution of the payment system network.

age degree9. We can see that the SPEI network deviates from a random graph and that
it possesses more triangles than a random network.

4.1.2. Interbank exposures

Figures 7 and 8 show the evolution of the global measures for the interbank expo-
sures base case. In such figures we can see that the interbank exposures experienced
an increasing trend from the beginning of 2005 until the end of 2006. From this peak
we observe a decline in the volume of exposures until the end of 2007. Afterward, an
upward trend started until the incorporation of the Mexican peso to the CLS (June 2,
2008). From this day forward we observe a decrease, as more FX operations were set-
tled by using the CLS. Shortly afterward, we observe the black line which marks the
Lehman failure, which apparently did not change this network’s global measure. The

9The average clustering coefficient of a random graph is equal to the connection probability p: c =

p = d
n−1

. In which d is the average degree of the graph.
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Figure 7: Evolution of the base case of the interbank exposures network.

daily number of arcs has an increasing trend until some of the Mexican banks started
to settle FX operations by the CLS10. There is a further decline after the bankruptcy of
Lehman. This shows that the Mexican interbank market was sensitive to such an event
on the number of links but not on the total volume of exposures. Changes in the average
degree and in the completeness index are related to the incorporation of new banks to
the Mexican banking system and also to the settlement of FX operations by the CLS
and the bankruptcy of Lehman Brothers.

Table 2 shows the same structural properties reported for the SPEI networks for three
different interbank networks: interbank exposures, interbank exposures eliminating the
FX operations which are settled by the CLS and the interbank exposures without all the
FX operations. From the table we can observe that the core of the interbank exposures
network without FX operations is the smallest. It is also the smallest for the rest of the
other measures. These results suggest that the inclusion or exclusion of FX settlement
risk changes the network structural properties in a considerable way.

Figure 9 shows two relevant graphs: (a) the evolution of the size of the core and
(b) the evolution of the relative clustering coefficient. From Figure 9(a) we can observe
that the core is smaller than the core of the SPEI network. This means that the SPEI
network is strongly connected in contrast to the interbank exposures network. Figure
9(b) shows the evolution of the relative clustering coefficient of the interbank exposures
network. We can see that the interbank exposures network also deviates from a random
graph.

Figure 10 shows the graph of the fitting to a power law of the degree and exposures
distributions11, for a particular day. On that day there were 40 active banks, and the

10Some of the sudden drops in the number of exposures are related to bank holidays in Mexico and
the US. The rest are related to some drops in the Mexican stock exchange index, the IPC.

11The Matlab functions used to generate graphs to estimate the parameters and the computation of
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Figure 8: Evolution of the base case of the interbank exposures network.

Mean Interbank Interbank - CLS Interbank - FX
Core Size 26.7 26.7 22.4

Completeness Index 0.3 0.3 0.2
Average Degree 9.0 8.7 5.7

Reciprocity 0.8 0.8 0.6
Average Distance 1.7 1.8 2.0

Total Arcs 279.7 262.2 145.0
Average Strength* 7.1 6.4 4.3

Total Volume* 125.5 110.8 77.2

Table 2: Statistics of the interbank exposures network.
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Figure 9: Evolution of the interbank exposures network.

estimated parameters were η̂ = 3.5 and d̂min = 10. The p-value obtained was 0.393;
therefore, it can be concluded that the degree distribution follows a power law distribu-
tion. However, it is important to point out that fitting a power law distribution to a
small sample (less than 50 data points) could result in an apparent good fitting even if the
data is not distributed as a power law. Therefore, the results for the degree distribution
should be considered with caution. Regarding the exposures, the distributional fitting
allows us to reach a more confident conclusion, given that the daily samples consist of at
least 126 data points.

Table 3 summarizes the percentage of days in which the hypothesis that the sample
can be fitted by a power law is not rejected. The table shows two different criteria for
the rejection of the hypothesis: if the p-value is less than 0.1 and a more relaxed criteria,
if the p-value is less than 0.05. From Table 3 one can infer that, with a strict criterion, it
is not possible to determine the scale free property for the interbank exposures network
for the degree, in degree and out degree. However, if a more relaxed criterion is used,
such networks would present such property most of the time. The parameters of the
distributions for the base case and the case without CLS FX operations are similar. The
parameters for the interbank exposures without the CLS are: for the degree η̂ = 2.96±
1.24 and d̂min = 8.64± 3.71, for the inner degree η̂ = 3.03± 1.16 and d̂min = 8.25± 3.31
and for the outer degree η̂ = 2.95± 1.23 and d̂min = 7.80± 3.39.

Another relevant finding is that, not considering the FX exposures changes the struc-
ture of the network considerably in a way that only the inner degree and the expo-
sures exhibit the scale-free property. The inner degree parameters are: η̂ = 3.33 ± 0.52
and d̂min = 6.77 ± 1.73, and the parameters for the exposures: η̂ = 1.89 ± 0.65 and
ŵmin = 449, 132.83± 448, 273.96.

the p-value were obtained from www.santafe.edu/∼aaronc/powerlaws/. All of these functions use the
methodology proposed in Clauset et al. (2009)
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Figure 10: Test for the power law distribution for the base case network (without CLS)

Interbank Interbank without CLS Interbank without FX
p-value < .05 < .1 < .05 < .1 < .05 < .1
Degree 77% 68% 81% 65% 54% 41%

Inn degree 81% 66% 83% 67% 84% 76%
Out degree 80% 60% 80% 64% 56% 45%
Exposures 57% 50% 63% 54% 83% 76%

Table 3: Percentage of days in which the exposures network exhibited power law distributions.

Figure 11(a) shows the evolution of the p-value of the inner-degree distribution for
the base case of the interbank exposures network. From this figure one can see that there
is no trend regarding the network structure. If the p-value is above the horizontal lines,
the power law distribution’s hypothesis is supported. It is also observed that the p-values
do not follow any pattern. Putting it another way, there are no particular periods of time
for which the network exhibits the scale-free property. For the other degree distributions
and exposures the graphs are similar.

Nevertheless, the evolution of the p-value of the degree distribution for the high-value
payments network of SPEI unveils an increasing trend (figure 11(b)). The beginning of
this trend takes place somewhere in 2008. The main reason for this structural change
seems to be a change in the fees for sending payments through SPEI12, rather than
Lehman’s failure, as some individual metrics suggest.

4.2. Individual measures

Before describing the individual measures we will examine two other relevant prop-
erties of a network. Figure 12(a) shows affinity vs degree. From this figure we can

12An assessment of this modification in regulation may be found in Negŕın et al. (2009).
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see that the SPEI network, for the base case, exhibits the “disassortative mixing” phe-
nomenon, which means that the counterparts of highly connected nodes are low-degree
nodes. Figure 12(b) shows the reciprocity in the SPEI network. From this figure we can
infer that reciprocity is around 82%, which means that most of the payments flows are
bilateral. The base case of the interbank exposures network exhibited a less pronounced
“disassortative mixing” property than for the base case of SPEI network. Nevertheless,
if a difference is made between large-value and low-value the payments in the SPEI, the
results change. For example, reciprocity remains about the same for low-value payments
but decreases for large-value payments.

There are many individual measures developed in this paper but we will show only
some of them, which can describe interesting behavior by particular banks. Among the
individual measures which will be reported in the next subsections are:

• The Herfindahl-Hirschman Index (HHI)

• Clustering coefficient

• Strength

• Volume

• Preference index

• In and Out degree

Only some of the above-described measures will be reported for either the SPEI or the
exposures network. We are particularly interested in metrics which can tell us something
about an institution in relation to systemic risk.

4.2.1. Payments system

In this subsection is shown the evolution of some relevant metrics which could help
to describe individual bank behavior. Figure 13(a) shows the evolution of the inner HHI
for one institution making a difference between large-value and low-value payments. The
figure illustrates different behavior from the same institution for the two different types
of payments. This institution is more concentrated in its incoming payment flows for
large-value payments than for its incoming payment flows for low-value payments. On
the other hand, Figure 13(b) depicts a bank whose concentration is sometimes higher for
large-value payments and at other times higher for low-value payments. Therefore, it is
impossible to tell in which type of payment it is more concentrated, and such payments
are probably made based on its current strategy. It is important to point out that this
specific behavior would be very difficult to reproduce with the current network formation
models.

Figure 14 shows the evolution of the clustering coefficient for two different institutions.
The clustering coefficient is calculated for the same usual separation of payments: low
vs large value. This figure illustrates that the two banks exhibit different clustering
coefficients for low-value and large-value payments. Moreover, while bank 19, Figure
14(a), exhibits a larger clustering coefficient for low-value payments, bank 8, Figure
14(b), presents the opposite behavior. This can be summarized in the following way: the
counterparts of bank 19 are more connected in the network of low-value payments than
in the network of large-value payments, while bank 8 exhibits the opposite behavior.
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Figure 11: Evolution of the p-value of the inner degree .
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Figure 12: Evolution of the SPEI network.
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Figure 13: Lending and Borrowing Herfindahl-Hirschman Index.
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Figure 14: Evolution clustering coefficient for two institutions.
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Figure 15: Concentration measures for bank B.

4.2.2. Interbank exposures

Among many relevant measures which can be useful to determine the vulnerability
of an institution, one is concentration. Although the measurement of concentration is
well known and quite simple, by means of the HHI, little attention has been given to it
in the modeling of networks and systemic risk. Here we would like to emphasize again
that assumptions which would imply diversification imply less concentration and, as a
consequence, less risk.

This contradicts the opinion expressed in Nacaskul (2010), in which a measure of
centrality is defined in a way that banks with a higher diversification of assets and
liabilities among its counterparts are considered more risky or systemically important.

When stress is building up in the financial system, concentration is harmful in both
ways: to both lenders and borrowers. Figure 15 shows two concentration-related mea-
sures: the HHI and the entropy. In this figure one can observe that bank B changed
its concentration as a lender after the failure of Lehman Brothers. After this event, this
bank was lending in a more concentrated fashion. The entropy measure changes in the
opposite way. The correlation between the two measures is −0.88, something which is
very common in this network. Another relevant aspect shown here is change in the be-
havior of bank B; after an extreme event, bank B became more selective in lending, and
we believe that this feature is impossible to replicate with random networks.

In addition to the above example, there are other important metrics which can be
used to monitor the behavior of banks in the network (for example, the total, inner and
outer strength, flow, etc.). These measures can indicate the role that a certain bank plays
in the network and the way it changes its behavior during stressful periods. Figure 16(a)
shows the flow of bank F, which increased after the fall of Lehman Brothers; meaning
that this bank became a liquidity provider in the interbank exposures network. Figure
16(b) shows the preference index for several counterparts of bank I. This index points
out that, in the period of maximum concentration, bank I had 40% of its funds loaned

28



2005 2006 2007 2008 2009 2010 2011
−1

0

1

2

3

4

5

Time

F
lo

w

(a) Bank F’s flow

A C D E F G H
0

5

10

15

20

25

30

35

40

45

Bank

%
 L

P
I

(b) Lending preference index for bank I

Figure 16: Flow and preference index for two different banks for the base case network.

to counterpart A alone and approximately another 40% jointly to banks C and D.

5. Centrality and systemic risk

This section presents the results on the centrality measures applied to all the different
cases of the two networks considered in our study: the SPEI and the interbank exposures
networks. Additionally, this section introduces a robustness study of such measures. As
has been previously said, (see Henggeler-Muller (2006)) an institution is relevant in a
network for several reasons: its degree, its closeness, its betweenness, its total strength,
etc. We are convinced that instead of choosing a particular centrality measure to derive
the importance of an institution in a network, it is possible to combine them in order
to take full advantage of the information which is implicit on each measure. With that
purpose in mind, we propose to use principal components (see Appendix B for a brief
introduction to principal components) to combine all the previously mentioned centrality
measures. Figures 17 and 18 show the different rankings of a bank by each different type
of centrality measure for the interbank exposures network. From such figures one can see
that, although there are some centrality measures which assign similar rankings (degree
and closeness, for example), there are some others which behave in a very different way,
like EEC and betweenness.

Figure 19 shows, in one single frame, how such measures of centrality are combined
to make a single measure of centrality for bank F. A very interesting feature is that the
principal components measure of centrality is not contaminated by the variability of the
betweenness and closeness centralities. It is important to point out that the betweenness
and closeness centralities changed dramatically after the failure of Lehman Brothers.
Additionally, the figure shows that the ranking for this bank fluctuates around fifth
place but is not static. This result has important implications for systemic risk purposes
and for the determination of systemic relevance. For example, in this figure it is possible
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Figure 17: Individual centrality measures.
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Figure 18: Individual centrality measures.
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Figure 19: Principal Components Centrality.

to see that, according to the principal components measure of centrality, around July
2010 this bank could be considered as the third most important bank in the network, but
around October 2010 this bank could be considered as the sixth most important bank
in the network. Although, we use this example for illustrative purposes, there are other
revealing examples of changes in importance on the studied networks.

The criteria that was used to decide which principal components measure of centrality
to use was based on a correlation study. Figure 20 shows the pairwise correlations between
some centrality measures. From this figure one can see that there are some centrality
measures which have an almost perfect positive correlation like strength centrality and
PageRank centrality. Nevertheless, there are some centrality measures which appear
to contribute different information to the unified measure like betweenness centrality,
closeness centrality and degree centrality. The highly correlated centrality measures,
EEC, PageRank and strength can be used interchangeably, but we would recommend
the measure with less computational complexity. However, since these measures are
highly correlated in this particular network, things might turn out to be different in
other types of networks. Finally, we will provide some evidence on the robustness of such
centrality measures.

In the following subsections only the principal components centrality measure will
be used for the interbank exposures and the SPEI networks. Some important central-
ity results for the SPEI payment flows will be reported and, afterward, the interbank
exposures results will be also be reported.
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Figure 21: Centrality for low-value and large-value payments in SPEI.

5.1. Payments system

This subsection will show some centrality measures findings for the SPEI networks.
As was previously said on Section 3, with the SPEI data two networks were generated:
a network only with low-value payments and a network with high-value payments. For
both networks, some centrality findings are reported in order to discover if an institution
plays a more important role for low-value or large-value payments. Figure 21(a) shows
that this bank plays a more relevant role in the network of large-value payments, whereas
Figure 21(b) shows that this bank plays a more important role in the network of low-value
payments. By differentiating the size of payments and building three different networks
one can understand why a bank is important in the payments network.

Summarizing: using the principal components approach to create a single centrality
measure for the SPEI networks was highly effective in terms of capturing the variance
of the data (in this case, the variance of the rest of the centrality measures.). In the
total SPEI network, the average explained variance was around 73% with a PC index
constructed with three variables and 77% with a PC index constructed with six vari-
ables. The PC index constructed with three variables, on its worst day, explained 50%
of the variance and, on its best day, explained 86%. On the other hand, the PC in-
dex constructed with six variables explained 62% and 88% on its worst and best days,
respectively.

5.2. Interbank exposures

The interbank exposures network also provides us with interesting findings. For
example, Figure 22 shows some relevant discoveries for the interbank exposures network:
Figure 22(a) shows changes in centrality for two different banks. In the figure, it is
possible to see changes in the relevance of each institution in terms of the PC centrality.
Figure 22(b) shows an interesting finding. After the failure of Lehman Brothers, bank

34



2005 2006 2007 2008 2009 2010 2011
1

2

3

4

5

6

7

8

Time

R
an

ki
ng

 

 

Bank’s A ranking
Bank’s B ranking

(a) Changes in centrality for banks A and B

2005 2006 2007 2008 2009 2010 2011
0

2

4

6

8

10

12

14

16

18

20

Time

R
an

ki
ng

 

 

Borrower
Lender

(b) Changes in centrality behavior for bank C

Figure 22: Changes in centrality.

C started to play a less important role in the network as a borrower but preserved
its importance as a lender. We consider both results to be very relevant as systemic
importance on interconnectedness terms has not been studied with this frequency and
under this perspective. This evidence would add more facts to our position that the
behavior of banks changes and, in particular, such changes are more dramatic after a
very important event.

Given some of the above-mentioned centrality measures, regulators can better esti-
mate the importance of a bank in the exposures network. Such measures go beyond
size and, in some cases, are not correlated or even negatively correlated with the size of
an institution (see table 4). A negative correlation of interconnectedness measures and
size, for a large bank, would indicate that such a bank is not that important in terms of
interconnectedness or, at least, not to the same degree as for its size. A negative intercon-
nectedness correlation with its size for a small or medium-sized bank would indicate that
such a bank is more important based on its connectivity than based on its size. Figure
23(a) compares the PC centrality with the Assets centrality of a medium-sized bank. It
can be seen that, even though based in its assets the bank does not seem important,
based on the PC centrality, the medium-sized bank achieves a top-ten ranking. On the
other hand, Figure 23(b) depicts a large bank whose relevance seems low in terms of PC
centrality while in terms of assets it is the second most important bank in the system.

Minimum Maximum
-0.109 0.764

Table 4: Correlation between PC centrality and Assets centrality.

Table 5 shows some basic statistics of the centrality for Bank E for the base case.
From this table one can observe that Principal Components measures of centrality have
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Figure 23: PC centrality and Assets centrality

a relatively low standard deviation, lower than for the betweenness, degree and closeness
centrality measures.

Mode Mean Std. Dev.
CB 6 9.89 5.10

EEC 2 2.72 1.51
PR 2 3.16 1.80
CD 6 8.12 4.37
CC 6 8.78 4.94
CS 2 2.96 1.68

PC(3) 4 4.89 2.77
PC(6) 3 3.44 2.07

Table 5: Statistics of centrality measures for Bank E.

5.3. Robustness of centrality measures

There are some desirable properties that a centrality measure should have. For exam-
ple, in Sabidussi (1966), the author proposes that the centrality of a node should increase
if an arc is added to such a node. Additionally, to add a node anywhere in the network
should not decrease the centrality of any node. Betweenness centrality does not satisfy
this criteria, but this centrality measure is important in contagion transmission terms.
In Freeman (1979), the author proposes that a centrality measure must qualify the node
at the center of a star network as the node with the highest centrality. This is because
this node has the highest degree, is included in all the paths between the other vertices,
and is the closest to the rest of the nodes.
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Besides the above-mentioned desirable characteristics of a centrality measure, a cen-
trality measure can be considered as robust if a small perturbation on the input data
causes small changes in the output. This is important when there could exist errors in
the data used to define the network13 because centrality would be assigned in similar
ways as if there were no errors on the input data.

In order to test the robustness of centrality measures Frantz and Carley (2005) per-
form simulations where an initial network is generated and a copy with perturbations
is created. Perturbations consist of creation and elimination of arcs and nodes. Never-
theless, the networks simulated in this study do not include weights, and the centrality
measures considered are only topological measures. Additionally, the authors also asso-
ciate the robustness of the centrality measures considered with different topologies.

We believe that the robustness of centrality measures is important in our context,
although we do not consider perturbations as errors but as changes on a dynamic network.
Therefore, robustness is important in this context as such measures will be used by
financial authorities which monitor important financial networks through time. The
robustness of centrality measures for the interbank exposures and the SPEI networks
will be associated with a similar centrality assignment from one day to another.

The study reported here is similar to the one proposed in Frantz and Carley (2005).
Networks with 100 nodes were generated using the Bollobas model with parameters
α = 0.2, β = 0.6, γ = 0.2, δ− = 0.01, δ+ = 4.45. The arcs’ weights are numbers from a
power law distribution with parameters η = 1.92, xmin = 297, 330. The perturbations to
the network consisted of creation and deletion of a percentage of arcs. Such percentages
determine an error level: 1%, 5%, 10% and 20%. The arcs for elimination were selected
randomly from a uniform distribution, and created arcs were also randomly created from
a uniform distribution. After the perturbation of the original network, the centrality
measures were computed and, in order to compare such measures, we used the criteria
proposed in Frantz and Carley (2005). Such congruence measures are:

• Top k vertices. This measure takes the value of 1 if the vertex with the highest
centrality in the original network is among the k nodes with the highest centrality
in the perturbed network. In this study k took the values 1, 3 and 10.

• Bottom k vertices. This measure takes the value 1 if the vertex with the lowest
centrality in the original network is among the k nodes with the lowest centrality
in the perturbed network. In this study k took the values 1, 3 and 10.

• Correlation. The correlation coefficient computed among the values of the centrality
measures in the original network and the values of the centrality measure in the
perturbed network.

• Overlap k. This measure takes values between 0 and 1. It reflects the extent to
which the 10 vertices of category k in the original network matches with the 10
vertices of category k in the perturbed network. Category 1 corresponds to the
top 10 vertices, Category 2 corresponds to the next 10 vertices below the Category

13This is more important for other social networks which are more prone to errors in the input data
used to define the bilateral relationships.
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1 vertices and so forth. Given that we generated 100 vertices, there will be 10
categories. The measure is computed in the following way:

Ok =
|V o

k

⋂
V p
k |

|V o
k

⋃
V p
k |

where V o
k is the set of vertices which belong to the category k in the original network

and V p
k is the set of vertices which belong to category k in the perturbed network.

This measure is used to identify how much the vertices change categories once the
network is perturbed.

For every original network, perturbed network and type of error, a thousand inde-
pendent replications were made. The results for every congruence measure are reported
below.

5.3.1. Top k vertices

All the centrality measures were robust under the Top k vertices congruence measure,
even for the maximum error level. Table 6 shows the percentage of time the measure took
the value 1 for the maximum error level. These results show that centrality measures
classify approximately in the same way as the node with the highest centrality in both
networks, the original and the perturbed one.

Creation Deletion
Top k k = 1 k = 3 k = 10 k = 1 k = 3 k = 10
CD 99% 100% 100% 96% 100% 100%
CS 94% 100% 100% 92% 99% 100%
CC 98% 100% 100% 94% 100% 100%
CB 97% 100% 100% 92% 100% 100%
PR 97% 100% 100% 96% 100% 100%

EEC 90% 95% 98% 90% 92% 95%
PC(3) 97% 100% 100% 93% 100% 100%
PC(6) 96% 100% 100% 93% 100% 100%

Table 6: Percentage of right classification under the Top k vertices congruence measure for an error level
of 20 %

The slightly less robust measures were CS and EEC. The latter even placed the node
with the highest centrality in the original network outside the top 10 in the perturbed
network. These measures depend on the weigths of the arcs. On the other hand, the
measures created under the principal components methodology were relatively robust.
Finally, all centrality measures were more sensitive to the removal of arcs than to the
addition of arcs.

5.3.2. Bottom k vertices

The centrality measure, CB , is very effective in identifying the least central vertex
and the less central vertices. This measure is robust to perturbations of small error levels
but affected at the highest level of error. Additionally, this centrality measure is more
sensitive to the creation of arcs than to the deletion.
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The rest of the centrality measures change the result for the least central vertex,
even with the lowest error level. Therefore, measure CB is the most robust centrality
measure under this type of congruence measure. Finally, perturbation by elimination
has a greater effect than perturbation by creation of arcs.

Creation Deletion
Bottom k k = 1 k = 3 k = 10 k = 1 k = 3 k = 10

CD 75% 99% 99% 4% 100% 100%
CS 75% 99% 99% 4% 100% 100%
CC 75% 98% 99% 4% 94% 98%
CB 99% 99% 99% 100% 100% 100%
PR 74% 98% 99% 5% 99% 100%

EEC 74% 99% 99% 4% 99% 100%
PC(3) 75% 99% 100% 4% 99% 100%
PC(6) 75% 99% 100% 3% 98% 100%

Table 7: Percentage of right classification under the bottom k vertices congruence measure for an error
level of 1%

5.3.3. Correlation

When the correlation congruence measure is considered, the error by arc creation
causes measures CD, CC and CB to suffer slight alterations in their results with the
lowest error level (superior blue line in Figure 24 (a)). When the error level increases
correlations decrease, in proportion with the error level. This is in contrast to the rest
of the measures, which with the lowest error level show bigger alterations in their results
(Figure 24 (b)). Among them, the most robust is EEC, whose changes are less dramatic
than the ones of PageRank, CS , PC(3) and PC(6).

For the arc elimination perturbation, the most robust centrality measure was CB ,
with correlations above 0.9, even for the maximum error level. The centrality measure
CD had a similar performance in the arc creation perturbation (similar to Figure 24 (a)).
Measure CC had more severe alterations than CD. Finally, the rest of the measures had a
similar performance: changing the error level causes important changes in results having
correlations around 0.4, similar to Figure 24 (b)).

Measures CB and CD were affected more by the arc creation than by the arc elimi-
nation, whereas the other measures had the opposite behavior.

5.3.4. Overlap k

Arc creation affected all centrality measures non-monotonically (Figure 25 (a)). Mea-
sures were more affected in the central categories than in the extreme categories. Each
measure presents different effects regarding the first category, and the degree of change
converges for the last category exept for CB . In particular, PC(6) was more robust than
PC(3) for the first two categories. Considering all categories, the most robust measures
under this criteria were EEC and CB .

Arc elimination had an almost monotonic decreasing effect for most of the measures
(Figure 25 (b)). In general, all measures present the same degree of impact except for
the CC . Measure CB had very different behavior from the rest of the measures, being
slightly affected in the first categories.
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Figure 24: Correlations for the centrality measures CD y PC(6) plotted against iteration.

6. Conclusions and further work

The most important conclusions in this paper are the following:

• Several centrality measures can be taken into account simultaneously by generating
a single centrality measure. Such a measure can be used for regulatory purposes.
This is important because taking a decision on which measure to use or which
measure is more important can be very difficult. Moreover, if a measure like be-
tweenness is chosen, its variability could make regulation impossible. However,
such a measure should not be disregarded because of its importance on the study
of contagion. Finally, if one studies the networks generated by type of exposure
or by size of payment, one can identify the different roles that banks (or financial
institutions) play in the financial system.

• More behavior-related measures can be useful in studying the financial system,
such as the HHI or the preference index. Additionally, such measures provide
some evidence of the difficulty generating meaningful financial networks by using
random graphs theory. These behavioral aspects are crucial to the monitoring and
measurement of systemic risk. In our study we observed that the preference index
can change dramatically (from 0 to 1) only by changing the time window used to
compute the index. We believe that by adding the frequency to the intensity of the
relationship a more meaningful measure can be obtained.

• Network formation models might not be fully appropriate because the weights on
the network are very important for economic reasons. Additionally, our experience
with the data is that when a new bank enters the financial system, this bank does
not establish a lending/borrowing relationship with the most connected nodes; this
could be in contradiction to the preferential attachment models. More work on
the generalization of such models is necessary in order to be useful in financial

40



1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Category

A
ve

ra
ge

 O
k

 

 

Degree
Strength
Betweenness
Closeness
PageRank
EEC

PC(3)

PC(6)

(a) Arcs creation

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Category

A
ve

ra
ge

 O
k

 

 

Degree
Strength
Betweenness
Closeness
PageRank
EEC

PC(3)

PC(6)

(b) Arcs deletion

Figure 25: Average Overlap (Ok) by category for an error level of 5%

networks because such models do not provide a means to model bank behavior or
to an understanding of the incentives of the participants.

• The robustness study is the first of its type on financial networks. The work which
inspired this paper was done on unweighted networks and mostly topological mea-
sures were used. This paper provides some good evidence of the robustness of
more sophisticated centrality measures, including the principal components com-
posite index.

To summarize: in this paper a centrality measure is proposed which can be used for
regulatory purposes. This measure estimates the interconnectedness of a bank in the best
possible way. Moreover, this unified measure of interconnectedness can be employed on
the methodology proposed by the BCBS to determine G-SIBs but can also be extended to
the context of Domestic-SIBs. A wide range of empirical measures is also provided as is
a complete description of two very important networks for the Mexican banking system:
the network of interbank exposures and the network of the payments system flows. Some
measures, beyond the topological ones, which can be very useful for financial stability
monitoring, are also proposed. In addition, this paper includes a simulation study on the
robustness of some centrality measures which have not been tested in the past. Finally,
some of the main findings of this study are: the payments system network is strongly
connected; in contrast to the interbank exposures network, connectivity of the payments
system network increases with time; and last but not least, the proposed unified measure
of interconnectedness for banks is uncorrrelated with assets size for some specific cases.

Possible lines of extensions to this work include the development of more general
network formation models, and the study of other financial networks like the securities
settlement network. Additionally, more can be done to test the robustness of centrality
measures by exploring more exhaustively the parameters of the Bollobás model, including
different network architectures or considering perturbations similar to the ones described
by the evolution of the SPEI or the interbank exposures network, in which arcs are
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created and eliminated at the same time.
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Appendix A. Entropy

The entropy concept was originated in physics and has also been used in information
theory. In this appendix we will provide some basic definitions of entropy and how this
concept is being used in the context of systemic risk. In particular, we will review briefly
the concept of entropy from information theory’s point of view.

Let’s assume that we have a set of messages X = {x1, x2, ...., xn} or information
sources, with probability distribution P = {p1, p2, ...., pn} which associates with each xi
a probability pi of appearance.

The quantity of information obtained from a message xi with probability pi is defined
as:

I(xi) = log

(
1

pi

)
. (A.1)

Shannon proposed in 1948, (see Shannon (2001)) to characterize the information
gained from the reception of a message with a function which depends on the likelihood
of the messages to appear. The most likely messages provide less information, whereas
the least likely messages provide more information.

Entropy is the expected information of X. Assuming that X is a discrete random
variable, then the entropy is the expected value of the random variable I(X):

H(X) = E(I(X)) =

n∑
i=1

pi I(xi) = −
n∑

i=1

pi log(pi) (A.2)

with the convention that 0 · log(0) := 0. This is known as the discrete Shannon
entropy.

The minimum value for the entropy is reached when pj = 1 for some j ∈ {1, 2, ..., n}
and pi = 0 for all i 6= j. In this case

H(X) = pj log

(
1

pj

)
= 0. (A.3)
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Entropy is maximized when the appearance of any symbol is equiprobable; that is,
when pi = 1

n for all i ∈ {1, 2, ..., n}, then

H(X) = − 1

n

n∑
i=1

log

(
1

n

)
= log(n). (A.4)

The use of entropy in the context of systemic risk is widespread, to the point of
being computed over sets which are not probability distributions. Entropy has been
used several times in this paper: on the centrality measures, as a principle to estimate
the network of exposures, and as a measure of heterogeneity and concentration.

Appendix A.1. Entropy for centrality measurement

In Section 2.3 it was mentioned how in Nacaskul (2010) the author used the concept
of entropy to define entropic eigenvector centrality. In this paper, the author argues
that a vertex, k, with a higher degree and higher diversification of its weights to its
counterparts should be considered as more important than the other vertex, l, with few
counterparts and higher concentration of weights. The computation of the entropy along
the row of the exposures matrix, Wnorm, corresponding to vertex l is larger than the
entropy calculated over the row corresponding to vertex k.

As was previously mentioned, we believe that a bank with more concentration in its
funding and loans has more risk and is more likely to be affected by contagion than
a bank which is less concentrated. Concentration in lending or borrowing would be
reflected in a higher HHI and a lower entropy. Therefore, the EEC could be weighting
more on vertices which are less important than nodes lending and borrowing in a more
concentrated fashion.

Nevertheless, considering again the same vertices, k and l, the vertex with the highest
entropy, k, also has more counterparts and its failure could impact more participants in
the system. This could also imply that, to a certain extent, the measure EEC relies on
or at least incorporates the degree centrality measure.

Summarizing: Wether EEC is assigning importance in an adequate manner or not
should be studied with more care in the future.

Appendix A.2. Entropy as a measure of concentration

A very important characteristic of scale-free networks is the heterogeneity of the arcs’
distribution. In Wang et al. (2006) the authors use entropy to measure heterogeneity.
They claim that, making a scale-free network more robust to the random deletion of ver-
tices is equivalent to maximizing the entropy of the degree distribution. After expressing
the entropy of the degree distribution for a scale-free network in terms of the number of
vertices of the network and the parameters of the power law distribution, the authors
obtain expressions for the values of the parameters which maximize entropy.

In Saltoglu and Yenilmez (2010) the authors interpret entropy as a measure of hetero-
geneity, but they compute the entropy over the vector used for the modified PageRank
algorithm, which they propose as a centrality measure. In the most homogeneous form of
this vector, institutions would have similar connectivity and, as a consequence, entropy
should be high. The existence of an institution which is becoming more important would
cause the entropy to decrease. The authors compute this measure with data from the
Turkish financial system and they identify, by means of the entropy, a deviation on the
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homogeneity at the beginning of a financial crisis in Turkey. This crisis led to the failure
of Demirbank, which became more central at this time. Finally, the authors conclude
that these measures can be used to forecast a financial crisis.

Let’s consider the computation of entropy over a vector which contains the informa-
tion about the loans given by bank i to the system. Such a vector is the wL

i row of the
matrix WL standardized (in such a way that the sum of the entries is 1); that is, the

entries of the vector are wL
ij =

wL
ij∑n

j=1 wL
ij
∀j ∈ {1, ..., n}.

If the exposures of such a bank are distributed homogeneously among its counterparts,
then one would have large values for the entropy, and if some of the exposures are more
concentrated in a few counterparts, the entropy would take smaller values. In this specific
case, the entropy can be interpreted as an indicator of concentration, in the opposite sense
to the HHI. In fact, the correlation obtained in one of the examples presented here is
close to −1.

Appendix A.3. Maximum entropy for network estimation

Some central banks do not have complete information regarding the exposures be-
tween banks. Typically, only total exposures or total loans are known and, in the best
cases, some central banks have information about the counterparts whose exposures are
the largest. In matrix terms, for a matrix WL, such central banks do not know the
individual wL

ij but only the total exposure of bank i to the system,
∑

j w
L
ij , and total

borrowing of bank i from the system,
∑

i w
L
ij .

It is common in several papers on the study of contagion through the interbank
lending market to assume that banks distribute their loans in an equitable way (see Upper
(2007) for a summary on several papers and the assumptions made). This corresponds
to maximizing the entropy among the interbank loans.

This assumption relies on the relative entropy, also known as the Kullback-Leibler
divergence. Given the distributions P = {p1, p2, ...., pn} and Q = {q1, q2, ...., qn} for a
discrete random variable, X, which takes values {x1, x2, ...., xn}, the relative entropy of
X over P with respect to Q is defined by14:

HP |Q(X) =
∑
i

pi log
pi
qi
. (A.5)

Relative entropy can be interpreted as a measure of deviation between two probability
distributions. If this entropy is large then both distributions are “distant”. In this
context, the probability distributions used are the standardized entries of the matrix
WL and the matrix associated with the maximum entropy assumption.

The unknown entries one wishes to compute are the solutions to an optimization
problem whose objective is to minimize an expression similar to (A.5), subject to some
constraints, including the condition that the diagonal has zero values. The reader may
find a detailed description of this methodology in Sachs (2010).

Nevertheless, there are some empirical examples which have shown that exposures
in banking systems are not homogeneously distributed, and such an assumption might

14This is only defined if qi > 0 for any i such that pi > 0 and it is also agreed that 0 · log(0) y 0 · log( 0
0

)
are interpreted as zero.
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distort the estimation of contagion risk. Moreover, in Mistrulli (2007) the author shows
that the maximum entropy assumption underestimates, in some cases, and overestimates,
in others, the risk of contagion.

Appendix B. Principal Components Analysis

The goal of this procedure is to use an orthogonal transformation to transform a
set of observations, possibly correlated, into an uncorrelated set of observations. The
transformation is defined such that the first principal component has as high variance as
possible and each succeeding component in turn has the highest variance possible. The
methodology describing the solution can be found in Jolliffe (2002). Formally speaking,
given p random variables X1, X2, . . . , Xp such that,

X = (X1|X2| . . . |Xp), and Xj =


Xj

1

Xj
2

...
Xj

n

∀j,
we wish to find a linear combination, c, such that it has maximum variance. We define
the set of all linear combinations, Wx, as follows:

Wx = {c | c = Xa, a ∈ Rp}. (B.1)

We assume that all variables are standardized. That is

ˆ
Xj

i =
Xj

i − X̄j

Sj

where X̄j =
∑n

i=1 piX
j
i , Sj =

∑n
i=1(Xj

i − X̄j)2 and
∑n

i=1 pi = 1.

For convenience, we define the following metric to measure the distance between
variables.

d2
D(Xj , Xk) =< Xj −Xk, Xj −Xk >D, (B.2)

with D = diag{p1, p2, . . . , pn}

Such that

< Xj , Xk >D= XjTDXk = Sj,k (B.3)

||Xj ||2D =< Xj , Xj >D= S2
j (B.4)

cos(Xj , Xk) =
Sj,k

SjSk
= ρj,k. (B.5)

Therefore, the covariance matrix is defined by V = XTDX ∈ Rp×p and the first
principal component is obtained by solving the following optimization problem,

max
a

aTV a s.t. ||a||22 = 1 (B.6)

whose solution is the eigenvector associated with the maximum eigenvalue.
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