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1 Introduction

Since the 2008-09 financial crisis, which took a significant toll on governments,

financial institutions and the worldwide economy, there exists a growing interest

by policy makers and the academic community in measuring and monitoring

systemic risk in order to anticipate the occurrence of costly events, thus

safekeeping financial stability. Several measures have been proposed during the

last few years, some of them improving the way weights assignment on indicators

used as inputs, others tackling the question of which inputs should be used,

and others proposing a succinct definition of systemic risk. Additionally, other

attempts have been directed towards reducing the dimensionality of the initial

set of indexes or indicators, or finding the best set of Early Warning Indicators

(EWI).

A crucial question arises: Do standard methodologies to measure financial

systemic risk use all available information? The answer to this question

relies principally on how the information is extracted from the data, the set

of indicators used to construct the indexes, and which indexes are combined

into a superior index. However, despite the large number of proposed indexes

there is no consensus about how the financial systemic risk should be measured

(see Bisias et al. (2012) for an extensive discussion).1 On the one hand, the

lack of consensus is not unexpected as some indexes are tailored to a narrow

context. For example, some indexes seek to measure systemic risk, while others

measure the contribution of a particular financial institution to an aggregate

measure of systemic risk. On the other hand, we cannot discard that standard

methodologies can be improved. For example, current indexes have difficulties in

incorporating large number of indicators, data gaps or to deal with nonlinearities.

In relation to the data needed to construct Financial Systemic Stress Indexes

(FSSIs), commonly used methodologies do not appropriately use the information

contained at the structural features of the sample data. In other words, the fact

that an index has, for instance, an increasing or decreasing trend, or a periodic

shape, or a local volatile behavior is itself informative. Up to our knowledge this

information is not used in the systemic risk literature2, and we propose the use

1 Bisias et al. (2012) argue on the desireability of not having a single systemic risk as it has

different sources.
2 Current methodologies do not extract information from the order of an indicator. For them,
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of statistical methodologies that allow to extract a meaningful common pattern

that summarizes the information conveyed by all variables in the sample.

Additionally, there are two common data restrictions implicit on the methods

to construct FSSIs. The first one is related to the no sparseness assumption in

the data, in the sense that all inputs must be calculated over all measured points.

However, in practice it is often the case that some inputs have only been observed

at a relatively small number of points (i.e. sparseness in the inputs). The second

restriction involves a relatively low or medium-scale input data. Nevertheless,

due to the explosion of available information, the statistical accuracy and

computational efficiency of methods are seriously affected. Therefore, a possibly

nonlinear dimensionality reduction technique becomes necessary in order to

handle high-dimensional data preserving the data structure as much as possible.

In this paper we propose a novel methodology to obtain a financial systemic

risk index, which is simple to implement, and captures more information from

the data with respect to standard methods. The new index can also deal with

data sparseness and high dimensionality. With this new index at hand, we

compare popular indexes (and combinations of them) used by policy makers,

and asses their performance as EWIs.

In particular, we appeal to a functional framework by assuming that

the sample of indicators required to construct the index is a sample of

random functions rather than a set of random vectors as is usual in other

methodologies for constructing FSSIs. For functional data statistical analysis

see Ramsay and Silverman (2005, 2002), and Horváth and Kokoszka (2012).

Our functional methodology is a three-stage method. In the first stage, a

functional clustering method is applied to identify a number of homogeneous

groups of functions in the sample which share similar shape patterns. In

the second stage, for each cluster a template function is estimated in order

to summarize the information conveyed by all functions (i.e. preserving the

structural features of curves in the corresponding cluster). Finally, based on the

template functions obtained for each cluster, a functional index is built by the

application of an appropriate functional dimensionality reduction technique.

By comparing the proposed index with a wide range of indexes common in

the fact that xt precedes xt+1, where xt is a realization of a random variable X at time t,

is no more informative than if xt+1 precedes xt.

2



the literature and to policy makers, we obtain several results. First, we show

that the functional index captures new information. In particular, we compare

different methodologies with exactly the same data, and the Functional Index is

not discarded by variable selection methods. This result confirms that relevant

information is embedded into the shape of the variables, and that standard

methods are unable to capture it. Second, we find an optimal partition of

indexes and identify which of them serve as complements. Finally, we assess the

signal quality of the indexes as EWIs for Mexican data.

A second set of results is obtained through a simple simulation study to

show the conditions under which the proposed methodology outperforms other

methods. By constructing a two-sector economy we compare the Functional

Index with the same group of standard indexes, and evaluate their fit given a

set of common and idiosyncratic shocks. The main finding is that the new index

outperforms all other indexes when the variables become increasingly nonlinear.

This result is important if we accept the hypothesis that the higher the fragility

of the financial system, the more nonlinear the market variables may become.

Finally, and using variables with mild nonlinearities, the functional index has a

very good fit in the presence of both common and idiosyncratic shocks.

The rest of this paper is structured as follows. Section 1 finishes with the

literature review. Section 2 describes the data used to construct the systemic

risk indexes. The methodology of the proposed functional systemic risk index

is gathered in Section 3. Section 4 presents, the results in terms of the

complementarities between a set of indexes, and which index, or combination of

indexes, is considered as the best EWI. Additionally, results from a simulation

study of a two-sector economy are presented. Finally, some conclusions are given

in Section5.

1.1 Related Literature

A vast literature has emerged trying to explain the sources of systemic risk and

the propagation of financial crises, showing us the difficulties in this subject.

First, we have a group of papers such as, Allen and Gale (2000), Freixas et al.

(2000) and Allen et al. (2010), that argue that the failure of one financial

institution leads to the default of others through a domino effect. Another

way of interpreting crises is presented by Boyd et al. (2009), which explains
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them as a mix of economy-driven shocks and governmental responses. Hence,

stress indicators are seen as a measure of lagged government responses to

systemic bank shocks, rather than the occurrence of crises per se. But closer to

this work, Acharya and Yorulmazer (2007a), Acharya and Yorulmazer (2007b),

Acharya (2009) and Farhi and Tirole (2012), argue that systemic risk is preceded

by common shocks that appear indiscriminately and potentially affecting the

functionality and confidence of the entire system.

Since the Great Recession, there have been numerous efforts with dif-

ferent and more specific approaches studying systemic risk. Such attempts

include direct interbank connections (Allen and Bali (2012)), competition

(Anginer et al. (2014)), size and influence of institutions (Arnold et al. (2012)),

firm’s characteristics (Banulescu and Dumitrescu (2015)), spillovers into the real

economy (Bernal et al. (2014)), connectedness (Billio et al. (2012) and Jobst

(2013)), systemic relevance of an institution (Brechmann et al. (2013)), Sys-

temic Expected Shortfall (Acharya et al. (2009) and Acharya et al. (2010)),

topological (Kuzubaş et al. (2014) and Martínez Jaramillo et al. (2014)), un-

stable funding (Lopez-Espinosa et al. (2012)), contribution of a component to

its sector via the exposure CoVaR’s (Madan and Schoutens (2013)), institu-

tional imbalances (Oet et al. (2013)), large banks’ stock return correlations

(Patro et al. (2013)), tail risk of the portfolio of the banking sector’s liabili-

ties (Puzanova and Düllmann (2013)), aggregated Distance-to-Default (Saldías

(2013)), correlated default (Suh (2012)), clustering coefficient (Tabak et al.

(2014)), banks’ exposures to common risk factors (Trapp and Wewel (2013)),

global systemic risk (Weib et al. (2014)) and marginal expected shortfall

(Yun and Moon (2014)).

In the following lines we explain three ramifications in which the main

contributions can be categorized.

First, the most recent financial crises have highlighted that the causes

of stress events evolve over time and that inaccurate signals may lead to

inconsistent policy recommendations. This dilemma has awoken the interest

on developing indexes that can measure and predict systemic risk events.

Such examples are Lo Duca and Pletonen (2013), Hakkio and Keeton (2009),

Carlson et al. (2012), Drehmann and Juselius (2012), Kritzman et al. (2010)

and Hollo et al. (2012). However, as every index should be conceived as

a trade off between user objectives, model complexity and data availability,

4



among this literature there is no evidence of a unique correct methodology for

combining all the independent variables into a single overall index. Our paper

proposes a systemic risk index based on a Functional Data Analysis framework,

which provides an alternative to overcome common shortcomings of current

indexes, as it allows for the use and analysis of additional information not

captured by previous methodologies, while dealing with data sparseness and

high dimensionality.

Second, from the wide range of Financial Stress Indexes that have been

constructed recently, the question whether they complement each other arises.

In order to respond to that, we take advantage of the methodologies of the

aforementioned indexes and construct them for the case of Mexico and use

the two-step methodology posited by Aramonte et al. (2013). This two-step

methodology consists firstly of a test of the adjusted R2 from regressions of

changes in the principal component of all indexes - except for index i - on

changes in index i. Instead of comparing the R2 we apply the variable selection

technique called Least Absolute Shrinkage and Selection Operator (LASSO)

by Tibshirani (1996), which reduces the number of predictors in a penalized

regression model. This method has been applied recently on various papers, such

attempts include bankruptcy forecast (Tian et al. (2015)) and cross-volatility

(Aboura and Chevallier (2015)).

Third, there is a literature that investigates leading indicators and their signal

quality at forecasting systemic risk events. Candelon et al. (2014) evaluates a

dynamic logit early warning system, which exhibits significantly better predictive

abilities than their static equivalents. Laina et al. (2015) uses univariate signal

extraction and multivariate logit analysis to assess the factors that drive systemic

crises. These methodologies suppose a non-linear relationship between the

leading indicator and the event, unlike Drehmann and Juselius (2013) which

evaluates the leading indicators on the basis of their performance relative to

the macroprudential policy maker’s decision problem with a methodology that

supposes a linear relationship between de dependent and independent variables.

Using the latter methodology we evaluate and discuss the signal quality of a set

of indexes constructed as leading indicators for the Mexican case.

Our paper is related to Arsov et al. (2013) and Giglio et al. (2016) in that we

recognize that systemic risk indexes should not be regarded as good EWI, but

we are still interested in assessing their performance as such. With respect to
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Arsov et al. (2013), we also focus on “near-coincident” indicator, but the main

difference is that our new index is capable to include sparse inputs, and we

argue in favor of combining different indexes to improve the performance as

EWI. With respect to Giglio et al. (2016), while we coincide in the necessity

of combining systemic risk indexes, we are not interested in proposing a new

method to combine them. Our paper is focused on proposing a new index that

extracts more information from the data.

2 Data and Additional FSSIs

2.1 Data

The data has three characteristics. First, it is on a weekly basis. The

indexes mainly use market based indicators which are typically available at this

frequency. Second, we only include public information in the construction of

Mexican FSSIs. Finally, each of the variables are available at least since 2005 in

order to identify the recent financial crisis.

2.2 Additional FSSI

To measure the systemic risk we constructed several FSSIs based on the

methodologies proposed by Lo Duca and Pletonen (2013), Hakkio and Keeton

(2009), Carlson et al. (2012), Drehmann and Juselius (2012), Kritzman et al.

(2010) and Hollo et al. (2012). For simplicity, from heron we will call them as

Lo Duca, KCFSI, Carlson, Debt Service Ratio, Absorption Ratio and CISS,

respectively. Despite we do not modify the original methodologies, due to

data limitations we adapted some indicators to the Mexican case. Table 9 at

Appendix D describes in greater detail the data.

We selected a group of indexes based on three criteria. First, we are interested

on measuring systemic risk alone. Thus, we are not interested on measuring the

contribution of a particular financial institution to systemic risk, nor to what

extent a financial institution can be affected by a systemic episode. Second,

we want to compare our Functional Index with other indexes extensively used

by policy makers, or cited by academic papers. Finally, we concentrate on
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those indexes that basically require having access to Bloomberg. Each index is

calculated with Mexican data.3

The Debt Service Ratio, proposed by Drehmann and Juselius (2012), is an

index specially tailored to track the indebtedness of the economy’s private sector,

which is a variable that the literature finds highly correlated with financial

stress episodes. Another issue is the definition itself of a stress episode, and

Hakkio and Keeton (2009) propose a definition, and subsequently an index.

The next index, proposed by Lo Duca and Pletonen (2013), contributes to a

more accurate identification of the starting point of an episode of financial stress,

strange as it sounds this is a relevant research question. Later we present an

index proposed by Carlson et al. (2012), it investigates alternatives to standard

weighting methods, e.g. using principal component analysis, for a given set of

indicators.

Kritzman et al. (2010) propose the Absorption Ratio, which measures the

systemic risk by the extent to which the market is more coupled, causing shocks

to propagate faster and broadly along the system. The last index we use,

proposed by Hollo et al. (2012), is the first to provide a statistically founded

measure of systemic risk. The authors use portfolio theory to develop the index,

and assume that systemic risk arises from different sectors of the economy.

Appendix B provides a detailed description about these FSSIs, and Table 8

at Appendix D presents a short description of all of them.

We present all the indexes on one spot, see Figures 1-6. The peaks in all the

indexes capture episodes of high financial stress. For example, Carlson, CISS,

Debt Service Ratio and KCFSI capture the uncertainty from the Greek Rescue

Plan. Also, all indexes reflect high levels of stress during the Lehman Brothers

bankruptcy.

3 All the Matlab and Stata codes are available upon request.
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Figure 1: Carlson Figure 2: Debt Service Ratio

Figure 3: CISS Figure 4: KCFSI

Figure 5: Absorption Ratio Figure 6: Lo Duca
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3 The Functional Approach

3.1 Functional Systemic Risk Index

In the present section we argue in favor of a general systemic risk index

appealing to a functional framework by assuming that the (possibly high-

dimensional) sample of p random indicator variables used to construct the index

is a set of random functions belonging to some infinite-dimensional (functional)

space F instead of a finite-dimensional one as is usual. Thus, the variables

are viewed as functions or realizations of a continuous multivariate stochastic

process X = {X(t) ∈ R
p : t ∈ T ⊂ R

+} ∈ F defined on some index set T ,

where the data set is obtained from observations of a smooth random process4

observed at discrete time points t1, . . . , tni
. Usually, the functional data setting

is appropriate in different cases including, for instance, irregularly spaced

measurements, high-frequency data, sparsely observed curves, analysis where

the derivatives of underlying functions are important, among others. Indeed, in

the last twenty years, the statistical literature has witnessed numerous advances

about statistical analysis of functions with its subsequent applications in a

wide variety of scientific areas (e.g. in bioinformatics, medicine, economics,

finance, marketing, meteorology, geology, physiology, etc.), constituting itself as

an important and dynamic area of modern statistics.5

In the classic FDA situation with densely sampled grid curves a common

approach involves forming a fine grid of time points and sampling the curves

at each time point. Therefore, one reason to adopt this approach relies on the

goal of building a functional index that, for instance, allows the policy maker to

obtain risk measurements at any time, and not necessarily at equidistant time

points as usual.

In order to build the functional systemic risk index, and given that the

number of indicator variables could be huge, our functional methodology is

a three-stage method. In the first stage, a functional clustering method is

applied to identify K homogeneous groups of functions in the sample that

share similar shape patterns. In this stage, there exists the possibility that

4 By smooth we denote the absence of kinks.
5 Textbooks by Ramsay and Silverman (2005, 2002), and Horváth and Kokoszka (2012) offer

detailed introductions to the branch of functional data analysis.
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the curves into a particular cluster belong to an a-priori particular economic or

financial sector. In the second stage, for each cluster a template (representative)

function Yk(t), k = 1, . . . , K is estimated in order to summarize the information

conveyed by all functions (i.e. preserving the structural features of curves

in the corresponding cluster). Finally, based on template functions obtained

for each cluster, a functional index I(t) is built by the application of an

appropriate functional dimensionality reduction technique such as functional

principal component analysis or adopting a geometric-based approach by using

manifold embedding methods for instance.

What type of “systemic risk” our index measures? This methodology, bottom

line, performs a dimensionality reduction. As the inputs we use are market

variables, the systemic risk we measure is tightly linked to the volatility of all

indicators. Thus, with the exception of Hollo et al. (2012), our index and the

other indexes are measuring roughly the same thing.6 The difference of our

index is that, even if we do not use sparse inputs or a very large number of

them, as with the other standard methods, this new method does captures new

information. Moreover, if we use exactly the same information we show that

still we are capturing more information.

3.2 Functional Model-Based Clustering

Although there exists numerous functional data clustering approaches, we adopt

two popular methods: the classical and well-known two-stage approach which

consists in reducing the dimension of data in a first step by approximating the

curves into a finite basis of functions, for instance Fourier, splines or wavelets

basis, or by using the dimension reduction method of functional principal

component analysis. Next, in the second step, any usual heuristic or geometric

clustering algorithm such as the K-means one is used on the basis coefficients or

on the principal component scores. The other approach, known as the model-

based clustering procedure, is defined in a probabilistic setting by assuming a

probability distribution on the data x ∈ R
p, where the data are sampled from a

finite mixture of K parametric probability densities fk(x|θk), k = 1, . . . , K, i.e.

r(x) =
∑K

k=1
πkfk(x|θk), where πk ∈ [0, 1] (with

∑K
k=1

πk = 1) is the mixture

6 Bisias et al. (2012) group these indexes as Forward-Looking Risk Measures. These indexes

measure the fragility of the financial system.

10



proportion and θk is a parameter vector for the kth mixture component. One

of the advantages of the model-based approach is that, in contrast with the

two-stage methods, the two tasks of dimensionality reduction and clustering can

be performed simultaneously. See James and Sugar (2003) for a flexible model-

based procedure for clustering functional data, and Jacques and Preda (2013)

for a survey on functional data clustering.

It is important to remark that in practice it is often the case that each

function, or some number of them in the sample of functions, have only been

observed at a relatively small number of points and possibly observed at different

time points. Hence, any fixed grid will involve a relatively sparse set of points, i.e.

many missing observations for each curve.7 James and Sugar (2003) develop a

model-based method for clustering all type of functional data including sparsely

sampled functional data, where a mixed effects framework is used instead of the

basis approximation approach, in which the latter fails due to the sparseness of

the sampled functional data.

Following James and Sugar (2003), the problem setup may be formulated

as follows. Let a collection of N ≥ 2 units for which ni observations on any

variable X at tij ∈ T ⊂ R are available, denoted by Xij , j = 1, . . . , ni,

i = 1, . . . , N . The observations are considered as realizations generated by

evaluating the set of unknown smooth functions Xi(t) at points ti1, . . . , tini
, i.e.

Xij = Xi(tij). In presence of errors, a natural way to model the unknown

smooth functions Xi(t) by means of a finite q-dimensional basis approximation

is given by gi(t) = s(t)⊤ηi, where s(t) and ηi are q-dimensional spline basis and

unknown spline coefficients vectors, respectively.8 Letting X i, gi and ǫi be the

corresponding vectors of observed, true, and measurement error values at times

ti1, . . . , tini
, then

X i = gi + ǫi, ǫi ∼ N
(
0, σ2I

)
, i = 1, . . . , N,

and where the measurement errors are assumed to be uncorrelated with gi.

The spline coefficients vectors ηi’s are treated as random effects and modelled

using a Gaussian distribution,

ηi = µwi
+ γ i, γi ∼ N (0,Γ) ,

7 (See James and Sugar (2003), James (2011)) for more information.
8 Other appropriate basis function systems include, for instance, Fourier and wavelets bases.
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where wi ∈ {1, . . . , K} denotes the unknown cluster membership. James and Sugar

(2003) propose a further parameterization for the cluster means by rewritting

µk as

µk = δ0 +∆αk

where δ0 and αk are respectively q- and h-dimensional vectors, and ∆ is a

q × h matrix with h ≤ min(q,K − 1). This parameterization proves useful for

producing low-dimensional representations of the curves.

Under this formulation, the functional clustering model can be expressed as

Y i = Si (δ0 +∆αk + γi) + ǫi, ǫi ∼ N
(
0, σ2I

)
, γi ∼ N (0,Γ) , i = 1, . . . , N

where Si = (s(ti1), . . . , s(tini
))⊤ is the basis matrix for the ith curve, and with

restrictions
∑K

k=1
αk = 0 and ∆

⊤S⊤
Σ

−1S∆ = I, with Σ = σ2I + SΓS⊤,

where S is the basis matrix evaluated over a fine lattice of time points that

encompasses the full range of the data.

The estimation of the model involves estimating δ0, αk, ∆, Γ and

σ2 by the maximization of the mixture likelihood function L(θk) =∏N
i=1

∑K
k=1

πkfk(xi|θk), θk = (δ0,αk,∆,Γ, σ2, πk) through the Expectation-

Maximization (EM) algorithm treating the cluster memberships as missing data,

where wi is multinomial with parameters πk, k = 1, . . . , K. Details of the algo-

rithm are provided in James and Sugar (2003).

3.3 Functional Principal Component Analysis

The setup of the Multivariate Functional Principal Component Analysis relies

on the spectral analysis of the covariance operator K of X(t), in the class L2(T )p

of multivariate square-integrable functions, given by

K : L2(T )p → L2(T )p

ϕ 7→ Kϕ =

∫

T

K(·, t)ϕ(t)dt, ϕ = (ϕ1(t), . . . , ϕp(t))
⊤,

where K(s, t) is the continuous covariance (kernel) function (i.e. symmetric,

real-valued and positive definite) of X(t), with mean function µ(t) =

(µ1(t), . . . , µp(t))
⊤ = E [X(t)], defined as

K(s, t) = E [(X(s)− µ(s))⊗ (X(t)− µ(t))] , s, t ∈ T ,
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where ⊗ is the tensor product on R
p.9

Thus, let an orthonormal sequence of continuous eigenfunctions {ϕn ∈ L2(T )p}

and a sequence of corresponding nonnegative eigenvalues {λn}, the spectral de-

composition of K is given by (i.e. the Mercer’s Lemma)

Kϕn = λnϕn −→

∫

T

K(s, t)ϕn(t)dt = λnϕn(s), n = 1, 2 . . . ,

which is a Fredholm integral equation of the second kind, with
∫
T

∑p
j=1

ϕj,n(s)ϕj,m(s)ds =

δn,m, where δn,m is the Kronecker delta, δn,m = 1 for n = m and δn,m = 0 for

n 6= m.

The principal components {Zn} of X(t) are given by

Zn =

∫

T

p∑

j=1

[(
X j(t)− µj(t)

)]
ϕj,n(t)dt,

which are zero-mean uncorrelated random variables where E (ZnZm) = λnδn,m.

For the empirical implementation of the multivariate functional principal

component analysis see Ramsay and Silverman (2002) or Jacques and Preda

(2014).

3.4 Functional Index

The Functional Systemic Risk Index (FFSSI) for the Mexican data is on a

weekly basis. We select 44 sparced indicators, and applying the methodology

by James and Sugar (2003) we construct eight clusters, and for each one a

functional index using functional principal components.

At Figure 7 we plot the indicators at each cluster and we observe several

regularities. First, clusters do not have the same number of indicators. Second,

sparced indicators are not gathered at one cluster. Finally, some indicators that

have a similar shape do not necessarily belong to the same cluster.

The FFSSI we propose has exactly the same interpretation of a standard

index that uses principal components. The advantage of our methods relies on

the fact that we alleviate common data restrictions, namely, that all indicators

need to start and finish at the same date, and we cannot allow for data gaps.
9 For any s, t ∈ T , K(s, t) is a p × p matrix with elements K(s, t) [j, l] = Cov [Xj(s), Xl(t)],

j, l = 1, . . . , p.
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Note: All figures present years at the horizontal axis, and the normalized indexes at

the vertical axis.

Figure 7: Functional Clusters

Figure 8 plots the FFSSI for Mexico. In the following Section we discuss

the performance of this index versus all the other indexes described in Section

2. Moreover, and for the Mexican data, we identify which indexes better

complement each other, and which are better EWIs.

14



Note: We present years at the horizontal axis, and the index at the vertical axis.

Figure 8: Functional Systemic Risk Index

4 Results

Can the Functional Index capture relevant information about the systemic risk

from the shape of the data? Is this extra information captured by standard

systemic risk indexes? Which indexes better complement each other? Which are

good Early Warning Indicators? With these questions in mind we divide this

section in two. First, we use Aramonte et al. (2013) and Rothman et al. (2010)

to answer the first three questions, and then we use Drehmann and Juselius

(2013) to answer the last question.

Before continuing, we want to spend a few words explaining how the

methodologies operate. At Appendix A we thoroughly explain how we apply

these methodologies to the set of indicators used by the Mexican Central Bank

to construct their systemic risk index. At Appendix C all methodologies are

explained in detail.

The methodology in Aramonte et al. (2013), which involves three steps,

identifies the smallest set of indexes that gather as much information as the

full set of indexes. In the first step, we evaluate if the indicator helps to predict

rough measures of stock market volatility. Then, we evaluate the fit of every

index on the first principal component of all other indexes, and we rank them

accordingly. Finally, using the same principle of the second step, we evaluate

the fit of the first principal component of each element of the power set of the

indexes on the first principal component of the remaining indexes.

From a statistical point of view, Aramonte et al. (2013) has some drawbacks
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which we solve. Namely, the first two steps involve a variable per variable

analysis, and use a simple adjusted R2 criteria to rank the indexes. We propose

to use a multivariate LASSO approach, following Rothman et al. (2010), to

replace the first two steps. The refinement we propose jointly analyzes all

indexes, and makes the ranking more reliable. This methodology is explained in

detail at Appendix C.

To asses all indexes’ performance as EWIs we use Drehmann and Juselius

(2013). In this methodology we sort the indexes according to an ad-hoc rule.

Namely, the quality of the index’s signal must be above some threshold, the

quality should increase as one approaches to a systemic episode, and the

indicator should warn “with enough time.” For example, we will discard indexes

whose signal arrives, for example, two months before the crisis occurrence or

whose signal’s intensity does not increase the closer we get to the beginning of

the crisis.

In the remainder of the section we proceed as follows. First, we evaluate if

the Functional Index captures relevant information not available with previous

methodologies. Also, we identify the best partition of indexes, and which serve

as good EWI. Second, via simulations we compare the Functional Index with

other systemic risk indexes, and study the role of data nonlinearity, and common

and idiosyncratic shocks.

4.1 Complementarities and EWIs

We apply Aramonte et al. (2013), Rothman et al. (2010) and Drehmann and Juselius

(2013) to the set of FSSIs using the Mexican data. The indexes to be considered

are: Carlson, KCFSI, Lo Duca, Absorption Ratio, CISS, the Mexican Central

Bank’s index (DEF ), the Functional FSSI with our own collected data (FF-

SSI ), and variations of the CISS and FFSSI with the data described in Table 7

at Appendix D (CISS_DEF and FFSSI_DEF, respectively)

4.1.1 Complementarities.

We study the complementarities of all considered Financial Systemic Stress

Indexes (FSSI). For the sake of clarity we begin analyzing a situation where
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the data is the same, but the methodologies differ. Later we compare all the

indexes.10

Same Data, Different Methodologies. In this exercise we consider the

indicators used by the Mexican Central Bank to construct the FSSI. We only

compare those indexes that could use exactly the same information, namely

DEF, CISS_DEF and FFSSI_DEF.

Two questions can be answered, namely: Which is the optimal partition of

the set of indexes? Which indexes complement each other? For this case the

power set is small.

The table below shows the adjusted R2 (aR2) calculated for each element

of the power set. The first column has the indexes in the set, the second the

aR2, the third the aR2 where principal components are replaced by one-lag

autoregressive residuals, and the fourth the average of columns two and three.

Table 1: Same Data, Different Methods
aR2 aR2 Rob Check Average Ranking

DEF 0.799 0.799 0.799 1

CISS_DEF, FFSSI_DEF 0.799 0.799 0.799 2

FFSSI_DEF 0.606 0.604 0.605 3

CISS_DEF, DEF 0.606 0.604 0.605 4

DEF, FFSSI_DEF 0.435 0.432 0.433 5

CISS_DEF 0.435 0.432 0.433 6

Table 1 shows that the index constructed with the standard principal

component method explains as much variability as the other two indexes. We

cannot conclude from this that DEF index will be either a better Early Warning,

nor a better forecaster. Further analysis remains to be done.

We observe a complementarity between the CISS_DEF and the FFSSI_DEF

methodologies. As the only difference between FFSSI_DEF and DEF is that the

former uses more information (that is contained on the shape of the data), we

10We do not consider the situation with the same methodology but different datasets because

we are not advocating in favor of a particular set of indicators. Our goal is to propose a

new methodology, and compare it with other FSSIs.
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can conclude that the extra information is responsible for the complementarity.

This fact will hold further robustness checks.

Can we eliminate an index with Rothman et al. (2010)’s multivariate

LASSO? Using as dependent variables the volatility of the exchange rate, the

EMBI, the consumer price index, and the VIMEX we could not eliminate any.

This result implies that indeed the Functional Index is capturing additional

information versus the principal component methodology. Still, this extra

information captured by the Functional Index does not make it necessarily a

better EWI.

All Indexes Now we look at the big picture and evaluate the relevance of the

Functional Index vis-a-vis other indexes, and seek the optimal partition of the

power set of indexes. Once we find a partition we can infer a rule about which

indexes should be combined. Finally, we can identify the smallest set of indexes

that predict the variability of all others.

Before starting the analysis a clarification is due regarding the use of FFSSI

or FFSSI_DEF. We will present our results with FFSSI_DEF, rather than with

FFSSI for two reasons. The data used in FFSSI_DEF is very well selected,11

has no gaps and has the same periodicity. Our goal is not to advocate in favor

of a particular set of indicators but in favor of a new methodology. A second

reason is that if we include new sounded indicators with data gaps or different

periodicities, that will only play in our favor. We believe using FFSSI_DEF is

a conservative approach. All the results we present are robust using instead the

FFSSI.

The first question we ask is if we believe any of the indexes should be

eliminated. In other words, do we have a priori any doubt about one, or some,

of the indexes? We proceed assuming the answer is No.

If we assume all indexes should not be discarded then the power set has a

cardinality equal to 27 = 126. The table below presents the aR2 for the six

highest ranked power sets.

Table 2 shows that the smallest partition is constituted by DEF and Carlson

indexes. While the former is constructed using standard principal components,

11Actually it is the same used by the Mexican Central Bank (DEG index). See Lopez Chuken

(2014).
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Table 2: All Indexes
aR2 aR2 Rob Check Average Ranking

Carlson, DEF 0.409 0.407 0.408 1

Complement of Carlson, DEF 0.409 0.407 0.408 2

Carlson, DEF, KCFSI 0.404 0.401 0.402 3

Complement of Carlson, DEF, KCFSI 0.404 0.401 0.402 4

Carlson, DEF, Abs Ratio 0.399 0.396 0.397 5

Complement of Carlson, DEF, Abs Ratio 0.399 0.396 0.397 6

the latter adjust the weights assigned to the indicators (or inputs) according to

previous interventions of policy makers. Again, we should not conclude from

here that one partition is better than the other. For this we need to evaluate

their predictability, or the performance as EWIs.

Analyzing the complementarities along all indexes we observe a clear

partition. On the one hand, we have the DEF and Carlson indexes. On the other,

we have the complement, namely KCFSI, Lo Duca, AR, CISS, and FFSSI_DEF

indexes. This partition confirms the complementarity between the CISS and the

FFSSI indexes.

To further test the robustness of the results we start eliminating, in a first

stage, those indexes that explain the least of the variability of the remaining

indexes. From hereon we refer to them as the worst indexes.

A clear pattern eventually arises. As an example, we focus on a case where

the worst four indexes are eliminated. The cardinality of the power set is 24 = 16.

The table below shows the aR2 of the ten highest ranked sets.

Table 3 confirms the pattern of complementarities. The set with the highest

aR2 is constituted by the DEF and the Carlson indexes. The set constituted by

CISS and FFSSI_DEF follows. At this point calling one of the sets as superior

is inaccurate because they share the same cardinality.

The above results suffer minor changes once we apply Rothman et al.

(2010)’s multivariate LASSO. The set of indicators that survive the filter is

constituted by the KCFSI index, the Lo Duca index, the CISS index, the

FFSSI_DEF index and the DEF index. Then, we apply Aramonte et al. (2013)’s

last step and obtain an optimal partition where DEF and KCFSI indexes

constitute the first subgroup, and Lo Duca, CISS and FFSSI_DEG indexes
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Table 3: All Indexes: Best 4
aR2 aR2 Rob Check Average Ranking

Carlson, DEF 0.333 0.330 0.332 1

CISS, FFSSI_DEF 0.333 0.330 0.332 2

DEF 0.328 0.325 0.327 3

Carlson, CISS,FFSSI_DEF 0.328 0.325 0.327 4

Carlson, FFSSI_DEF 0.242 0.238 0.240 5

CISS,DEF 0.242 0.238 0.240 6

Carlson, CISS,DEF 0.204 0.200 0.202 7

FFSSI_DEF 0.204 0.200 0.202 8

Carlson 0.104 0.100 0.102 9

CISS,FFSSI_DEF, DEF 0.104 0.100 0.102 10

Carlson, FFSSI_DEF,DEF 0.092 0.088 0.090 11

CISS 0.092 0.088 0.090 12

FFSSI_DEF, DEF 0.082 0.078 0.080 13

Carlosn, CISS 0.082 0.078 0.080 14

the second subgroup.

The previous paragraph confirms that the Functional Index captures relevant

information. The fact that FFSSI_DEF and DEF use exactly the same

information, and that the multivariate LASSO selects them both, confirms that

relevant information about the systemic risk is embedded into the shape of the

data. Our argument will be strengthened if indicators present data gaps, or

start at different points in time.

4.1.2 EWIs

FSSIs commonly are not regarded as good EWIs. Those constructed with

financial institutions’ equity returns and book data have low predictive power of

macroeconomic downturns. Giglio et al. (2016) construct a set of indexes for the

US, EU and UK, verify the claim for individual indexes, and propose a way to

combine them to obtain a new systemic risk index with better predictive power.

FSSIs constructed with market-based data are usually better “near-

coincident”12 indicators than EWIs. Likewise, Arsov et al. (2013) construct a set

12These indicators are very useful. Policy makers can determine extraordinary regulatory
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of indexes for the US and Euro area, verify the claim for all indexes, and propose

a new “near-coincident” index. The authors do not envision the possibility of

combining individual indexes into a superior index.

The Functional Index, together with the other indexes constructed with the

Mexican data, heavily rely on market-based data. In the last part of this section

we apply Drehmann and Juselius (2013) to assess the performance of individual

FSSIs as EWIs, and argue in favor of combining a subset of them according to

their performance.

We use the EMBI as a financial activity index. The higher the volatility

with respect to the historical volatility, the more likely we are to face a

systemic episode. The results are robust if we replace the EMBI by the

VIMEX, the exchange rate or the consumer price index (see Appendix D for

the corresponding figures).

Figure 9 shows that the performance as EWIs of the indexes using principal

components is heterogenous. On the one hand, the performance of the KCFSI

index satisfies all desired requirements. Remarkably, the quality of the signal

almost ten weeks before the systemic event is very close to one. On the other

hand, the performance of DEF and FFSSI indexes exceeds the 0.5 threshold

twenty weeks before the systemic event. However, the quality of the signal

is lower compared to KCFSI’s. While KCFSI has a stronger signal (in the

sense of Drehmann and Juselius (2013)), the DEF and FFSSI better explain the

variability of the remaining indexes.

The quality of the signal, for the KCFSI, DEF and FFSSI, has an advantage

over other indexes. Although their quality in average is lower, the rate of change

(their slope) is the highest. This implies that if these indexes start increasing

with a high pace, then there is a high probability that a systemic event may

materialize.

The CISS index has the highest average signal quality. First, the CISS and

CISS_DEF AUC is on average higher than 0.7 over all the fifty weeks prior to

the systemic episode. Second, the AUC is smooth and increasing at least thirty

periods prior to the episode. Finally, when we focus on the ten to fifteen weeks

prior to the systemic episode, these indexes outperform any other index in the

sample.

measures to be implemented if they cross a predetermined threshold.
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Note: We present the AUC at the vertical axis, and the number of weeks before a

crisis occurrence at the horizontal axis. Red dashed lines represent 95% confidence

intervals.

Figure 9: Indexes’ AUC using EMBI as the dummy indicator

The performance of Carlson and Lo Duca indexes is also interesting. The

quality of both signals is almost equal to one several weeks before a systemic

episode. Also, the quality of the signal is over the 0.5 threshold almost forty

weeks before.

Finally, the performance of the Absorption Ratio is discarded because the

AUC does not reach to one, not even when the systemic episode occurs.

How should we use all indexes? From the previous subsection we learned

that the DEF and the FFSSI explain better the variability of the remaining

indexes. Also, we learned that the FFSSI and the CISS complement each other.
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On this subsection we learned that, for the Mexican data, the CISS is the best

EWI, and that the KCFSI, DEF and FFSSI have the highest AUC’s slope.

In order to keep things simple we should monitor the FFSSI and the CISS,

either separately or by combining them into another index.13 First, these

indexes, in particular the FFSSI, brings into the table all the information

embedded into the other indexes. Additionally, even if the data is not sparced,

with the FFSSI we capture information that no other index is capable of

capturing. Second, with the CISS we guarantee using the best EWI, and with

the FFSSI we use an index with a high AUC’s slope.

4.2 Simulations

Now we consider a two-sector economy and construct a systemic risk index using

variables from both sectors. The objective is to compare the Functional Index

with other FSSIs under different environments, namely, under shocks affecting

both sectors, and others affecting just one of them. To follow a conservative

approach we only use the true variables that constitute the systemic risk index,

all of them will be continuous, and will start and finish at the same dates.

Benchmark. The simulated data is obtained from a mixture of two Gaussian

distributions. At the benchmark, both Gaussian distributions have an equal

weight, and equal covariance matrices. The difference lies on the mean’s sign.

Figures 10 - 11 show a scatterplot of the sample of random variables, and the

systemic risk variable.

At Appendix D, Figures 21 - 26, we present the systemic risk index calculated

with all FSSIs. Aside from the Absorption Ratio index, the FSSIs achieve to

resemble the true systemic risk variable. From the figures we observe that the

indexes that use Principal Components, i.e. KCFSI and FFSSI, have the closest

fit. However, other indexes also perform well.

13We already showed these two indexes complement each other and capture most of the

variability of the other indexes. In an scenario without data gaps, and without important

nonlinearities, we can replace the FFSSI with the DEF index.
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Figure 10: Benchmark Sample
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Figure 11: Constructed Systemic Risk

Common and Idiosyncratic Shocks. The objective now is to observe

how the fit changes with different types of shocks to our simulated two-sector

economy. We consider four common shocks and two idiosyncratic shocks. The

former are shocks to all the elements of the diagonal of both covariance matrices;

shocks to the mean of both Gaussian distributions; to the weights assigned from

the mixture distribution; and to the number of variables that conform the true

systemic risk variable. The idiosyncratic shocks, are on the off-diagonal elements

of the covariance matrix and on the mean of one of the Gaussian distributions.

Table 4 presents the results for the common and idiosyncratic shocks. The

main result is that the Functional Index outperforms other FSSIs when the

input variables become increasingly nonlinear. In other words, we find evidence

in favor of the importance of capturing the information embedded into the shape

of the variables. This result is relevant if we accept the hypothesis that as the

fragility of the financial system increases, the variables used to construct the

index become more nonlinear.

The results for the other shock assume that the variables used to construct

the FSSI are “fairly linear”.14 The first insight is that the Functional Index’s

fit is very good compared to the other FSSIs. In many cases, the difference

with the best fitted index is minimal. Second, the fit of the Functional Index

is particularly good when we modify the number of variables that compose the

14By “fairly linear” we mean that the variables are not lines, but rather polynomials with mild

nonlinearities. For example, none of our variables are polynomials of degree two.
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systemic risk variables. Finally, the fit is very stable for the shocks on the

variance and on the mean. Our results do not qualitatively change for common

or idiosyncratic shocks.

Wrapping up, under a conservative setting, the simulations show that the

Functional Index is well suited to capture the information embedded into the

shape of the data. In addition, the proposed index, given a set of shocks, has a

good fit, specially when the systemic risk is determined by a greater number of

variables.

5 Conclusions

In this paper we propose a new systemic risk index tailored to deal with

frequent shortcomings of similar indexes prevalent in the literature and used by

policy makers. We argue our methodology allows to capture new and relevant

information contained in the data vis-a-vis standard indexes. In particular,

and using a Functional Data Analysis framework, our index incorporates the

information contained in the shape of the inputs to construct the index.

Standard methods do not include this information.15

We also compare the index with other systemic risk measures widely used

by policy makers using Mexican data. First, using Aramonte et al. (2013), we

find a robust partition of the set of indexes that determines the optimal way

to combine them. Second, using Rothman et al. (2010)’s multivariate LASSO,

we show that the new index captures important information embedded into

the shape of the variables. Third, following Drehmann and Juselius (2013),

we compute the quality signal of each index and rank them accordingly. We

conclude arguing that the best systemic risk index, given the Mexican data, is

a combination of our index and the one proposed by Hollo et al. (2012).

However, if all relevant indicators are well behaved (not sparsed data)

and without important nonlinearities, the performance the Functional Index

is similar to that of any standard principal component indexes.

Finally, through simulating a two-sector economy, we show that the

Functional Index has the best fit when the data becomes increasingly nonlinear.

15The index can be easily calculated using R, code is available upon request.
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Table 4: Common and Idiosyncratic Shocks
Common Shocks on the NonLinearity

NonLinearity KCFSI CISS Lo Duca Abs. Ratio Carlson FFSSI

MAE 0.1 73.93 73.56 82.87 133.63 126.70 29.17

MAE 1.1 74.20 125.36 98.54 81.36 94.00 117.29

MAE 2.1 125.76 160.13 122.85 120.94 127.83 118.22

MAE 3.1 94.19 110.24 112.56 173.69 106.35 74.71

MAE 4.1 92.32 129.69 101.68 132.31 98.58 85.01

The shock is on the nonlinearity of the variables

Common Shocks on the Variance

Variance KCFSI CISS Lo Duca Abs. Ratio Carlson FFSSI

MAE 0.1 36.52 171.61 87.75 173.47 91.97 48.18

MAE 0.3 37.80 52.93 87.11 166.41 90.29 48.42

MAE 0.5 38.62 71.06 89.98 160.79 88.98 48.63

MAE 0.7 39.26 67.97 87.89 145.07 87.82 48.83

MAE 0.9 159.74 56.98 87.43 144.94 86.75 49.02

The shock is at the diagonal elements of the covariance matrices

Idiosyncratic Shocks on the Variance

Variance KCFSI CISS Lo Duca Abs. Ratio Carlson FFSSI

MAE 0 38.62 71.06 89.98 160.79 88.98 48.63

MAE 0.1 37.26 57.13 90.38 146.95 90.35 51.40

MAE 0.2 35.93 55.17 91.55 146.93 91.77 61.95

MAE 0.3 34.65 62.60 87.48 150.74 93.23 79.91

MAE 0.4 33.42 69.17 85.90 148.13 94.73 96.61

The shock is at the off diagonal elements of the covariance matrix of on Gaussian distribution

Common Shocks on the Mean

Mean Increase KCFSI CISS Lo Duca Abs. Ratio Carlson FFSSI

MAE 0 38.62 71.06 89.98 160.79 88.98 48.63

MAE 0.05 38.53 54.18 89.41 138.34 89.12 48.52

MAE 0.1 38.43 56.07 89.21 151.97 89.26 48.42

MAE 0.15 38.34 48.60 89.61 137.22 89.39 48.32

MAE 0.2 38.25 68.75 89.10 141.17 89.53 48.22

The shock is on both Gaussian distributions

Idiosyncratic Shocks on the Mean

Mean Increase KCFSI CISS Lo Duca Abs. Ratio Carlson FFSSI

MAE 0 38.62 71.06 89.98 160.79 88.98 48.63

MAE 0.05 39.34 54.73 89.10 151.53 88.65 48.58

MAE 0.1 40.10 54.23 88.55 146.60 88.30 48.52

MAE 0.15 40.91 55.95 88.31 138.74 87.91 48.47

MAE 0.2 41.77 69.85 87.54 145.39 87.49 48.42

The shock is on one of the Gaussian distributions

Common Shocks on the Weight

Weight KCFSI CISS Lo Duca Abs. Ratio Carlson FFSSI

MAE 0.1 153.95 166.58 57.40 159.92 13.61 16.82

MAE 0.3 153.88 167.87 51.69 151.03 14.36 15.14

MAE 0.5 38.62 71.06 89.98 160.79 88.98 48.63

MAE 0.7 55.48 84.32 46.42 195.73 86.11 47.51

MAE 0.9 151.67 153.04 55.26 205.08 8.85 136.81

The shock is on the weight of the first Gaussian distribution

Common Shocks on the Number of Variables Conforming the Systemic Risk

No. Variables KCFSI CISS Lo Duca Abs. Ratio Carlson FFSSI

MAE 29 158.33 53.69 42.09 192.43 22.82 69.74

MAE 22 29.30 71.61 88.08 151.38 96.13 21.39

MAE 18 38.62 71.06 89.98 160.79 88.98 48.63

MAE 15 151.78 152.58 60.97 202.63 8.70 69.65

MAE 13 158.68 54.44 61.66 157.28 38.72 17.13

MAE 11 81.36 85.11 111.78 171.79 114.24 19.68

The shock is on the number of variables used to compute the systemic risk index
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This result is important to policy makers because the fragility of the financial

system is often associated with higher nonlinearities in market variables.
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6 Appendix

Appendix A

The objective now is to apply Aramonte et al. (2013) and Rothman et al. (2010), and

Drehmann and Juselius (2013) to the set of indicators used by the Mexican Central

Bank to construct the systemic risk index. At Appendix C we describe in detail all

methodologies.

Complementarities. The Mexican FSSI is calculated using 34 indicators clus-

tered into six groups, see Table 7 at Appendix D. The reason for this division obeys

the assumption that systemic risk factors may arise from different parts of the economy.

A similar idea is adopted by Hollo et al. (2012).

The question now is which of these 34 indicators are really crucial. Or paraphrasing,

is it possible to obtain “the same” index using a smaller set of indicators? This is a fair

question at least for two reasons. First, policy makers can be interested in the general

public’s capability to asses the systemic risk of the financial sector. Second, even if

policy makers do not pursue this, it is easier to follow a smaller set of indicators.

The following table summarizes the chosen set of indicators for different thresholds,

Table 5: Indicators chosen by Aramonte et al. (2013)

Threshold Variables Sectors

2 cds_gobmex Country Risk

3 cds_gobmex Country Risk

4 cds_gobmex Country Risk

5 volimpl_tc, cds_privmex, embi_mex Exchange Rate, Country Risk

6 tdc, cds_gobmex Exchange Rate, Country Risk

7 vix, tdc, cds_privmex, embi_mex Equity, Exchange Rate, Country Risk

Table 5 illustrates which sectors contribute the most to the systemic risk for the

Mexican case. The Country Risk and the Exchange Market are the two main sectors,

and in a smaller scale we have the Equity Market.
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Figures 12 - 16 at Appendix D present both the composite index for Mexico using

the initial set of variables, and the index with the chosen set of variables16 for different

threshold values.

Rothman et al. (2010) requires a set of dependent variables, we used the volatility

of the EMBI and the consumer price index. Conclusions are robust to using additional

variables.17

The set of indicators that survive the robustness check excludes some of the

indicators chosen with Aramonte et al. (2013). The indicators that survive the

multivariate LASSO are vmex_10a, spread_sup, vol_tc, swapito, fwd_sprd_3m,

embi_mex, and the vix. Given this set of seven indicators we proceed with the last

step of Aramonte et al. (2013) and obtain the best partition of the set. The first

subgroup is given by swapito and vix, and the other subgroup is constituted by the

rest of indicators.

EWIs. To implement Drehmann and Juselius (2013) we need an indicator of stress

events. We construct four indexes for stress events, two representative of the economic

activity, and two representative of the financial sector. For the former group we use the

volatility of the exchange rate and of the consumer price index, and for the latter the

volatility of the EMBI and of the VIMEX.18 With each of these variables we construct

a stress dummy variable where a one represents a situation where the current volatility

exceeded in 1.5 standard deviations the historical volatility. Figure 17 at Appendix D

shows the historical behaviour of the stress dummy variables since 2005.

A good EWI should satisfy three criteria. First, the AUC19 must be above 0.5 for a

predetermined window, which in our case is between 20 and 6 weeks before any stress

episode. Second, the AUC should be monotonically increasing in that same window.

And finally, one should pick the EWI with the highest AUC.

Figure 27 shows the AUC for the best candidates to be an EWI of a systemic

episode for Mexico. Each figure on the vertical axis has the AUC for a given period

before a systemic episode starting at 0.5. The horizontal axis plots the weeks priors to

16We constructed the new composite index using standard principal component analysis.
17We also experimented with the volatility of the VIMEX and the exchange rate, but opted

not to include them because some indicators used them.
18The EMBI is an country-based index, and the VIMEX is the implicit volatility of the stock

market.
19AUC stands for Area Under the Receiver Operating Characteristic Curve. In short, the

closer AUC is to 1 the more informative is the signal of the indicator. See Appendix C for

details.
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such an episode. As zero represents the moment where the systemic episode occurs,

we must interpret them from right to left. For example, a good early warning has an

AUC equal, or very near, to one a few periods before to the systemic episode, and it

should monotonically decrease as we move to the right.

Not every indicator has the same signal quality. On the one hand, the AUC for the

spread sup (upper right) and the volimpl tc (lower left) do not exceed 0.5 until twenty

periods prior to the systemic episode. On the other hand, we have several indicators

with an AUC over 0.6, even for fifty periods before.

Appendix B - FSSIs’ Extended Explanation

Financial Systemic Stress Indexes (FSSI) aim to measure the prevailing state of

instability in the financial system. They evaluate the current levels of frictions, stress

and strains, and use distinct methodologies to summarize this information into a single

statistic. The use and interpretation of FSSIs must be taken with caution because given

the composition of the indicators, the complexity of systemic risk and data limitations,

FSSIs provide imperfect views of the state of instability in the system. Nevertheless, a

good FSSI allows real time monitoring and assessment of the stress level in the system,

and help us study past crisis episodes.

The Debt Service Ratio (DSR) is proposed in Drehmann and Juselius (2012) as

an indicator of the economic constraints created by the indebtedness of the private

sector. An increase in the DSR suggests that a higher fraction of the population

is over-indebted. We can interpret a high level of the DSR as a situation where if

an economic downturn occurs, or in particular, if borrowers’ repayment capacity is

diminished, the stability of the financial system can be seriously affected.

The DSR is defined as interest payments and debt repayments divided by income.

The authors argue that this formula captures the burden imposed by debt more

accurately than other established leverage measures, such as the debt-to-GDP, because

it takes into account factors that affect directly the borrowers’ repayment capacity, such

as interest rates and the maturity in the stock. The DSR is computed as follows:

DSRt =
itDt

(1− (1 + it)−st)Yt
,

where Yt denotes the quarterly aggregate income, Dt denotes the aggregate credit

stock, it denotes the long term interest rate, and st denotes the average remaining

maturity in quarters in the stock. To measure Yt we will take as a proxy the quarterly

GDP, and use the total credit portfolio as Dt.
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An issue when measuring the financial stress is that no episode is identical to

other previous episodes. The following index proposes a way to deal with this.

Hakkio and Keeton (2009) enumerate and describe certain characteristics that episodes

with high financial stress share, and they propose a FSSI that encompasses all these

characteristics. The value added of this FSSI is that we are certain about what are we

measuring, and in principle we should expect a reduction in the Type I error.

This FSSI is constructed utilizing the principal component method, a tool that,

through the structure of correlations of different variables, provides different weights

to each of them, giving more weight to those that are more informative. The final

weight for each variable is chosen so the overall index explains the maximum variation

in all the variables, subject to the standard deviation of the index being equal to one.

To solve the problem of combining all the different variables into a general index

Theil (1971) proposes the next methodology. Let n be the number of independent

variables; Xi,t the value of the ist standardized variable in time t; [a1, . . . , an] be the

set of weights for the n variables. The values solving the aforementioned problem are

the elements of the first eigenvector divided by the first eigenvalue (ψ) for the sample

correlation matrix of all the variables. Therefore, the FSSI is computed as follows.

FSIt = (a1/ψ)Xi,t + · · ·+ (an/ψ)Xn,t.

The identification of the starting date of a financial crisis has been the subject of

various research papers. Lo Duca and Pletonen (2013) note that several studies use

an approach that relies on qualitative information and judgment (increases in non-

performing loans, exhaustion of the banking system’s capital, raises on defaults, etc.).

As an alternative methodology they use a composite index to detect the starting point

of a crisis. This date coincides with the FSSI exceeding a predefined threshold, which

in the past anticipated a negative GDP deviation from its trend.

The first step is to construct the index including variables from the main segments

of the domestic financial market. The authors proceed like this because when the

economy enters into a stress period, tensions in different and numerous markets appear.

The FSSI, is computed at time t as a simple average as follows:

FSSIt =
1

5

5∑

i=1

qi,t(Indi,t),

where qi,t is the variable i transformed into an integer that ranges from 0 to 3

according to the quantile the observation belong to at time t. According to pre-existing
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studies,20 this way of standardizing variables based on quantiles is more robust than

a standardization based on mean and variance.21

An outstanding contribution of Lo Duca and Pletonen (2013) is that it introduces

a methodology which identifies truly systemic episodes that had real economic costs

as consequence, and not only events affecting specific market segments. To categorize

these events they make an analysis between different percentiles of the FSSI and the

economic activity selecting as threshold a level of the FSSI which in the past anticipated

an economic downturn.

The next FSSI improves on the standard weighting methods. While a variety

of weighting mechanisms have been employed by different stress indexes, principal

component based approaches being the most common, the stress index introduced by

Carlson et al. (2012) uses observed policy interventions to establish adequate weights

to the variables.

This FSSI uses variables that capture measures of risk pricing, uncertainty and

liquidity on the financial market. More specifically, it is based on the index introduced

by Nelson and Perli (2005), which is calculated with three sub-indexes, i.e. levels,

volatility and co-movement, and then uses a logistic regression framework to relate

the three sub-indexes into a single index. The main difference of this FSSI respect to

Nelson and Perli (2005) is that the periods of crisis are not chosen based on opinions of

when financial institutions where under stress, but they actually identify the different

interventions of policy makers into the financial industry and use them as a proxy for

periods of stress. To conclude, this FSSI indicates the degree to which actual financial

conditions are similar to periods where policymakers intervened.

The data used to construct the index consists of several variables that cover

punctual topics like liquidity, risk pricing and uncertainty in the financial market.

As we mentioned before, the overall FSSI is composed by three sub-indexes which

depict specific aggregate characteristics of the variables used.

As the methodology used to combine the three sub-indexes into a single overall

index is a logistic regression, it is necessary to take into account how they behaved

during previous stress episodes. For this, the event signaling a stress period will be

the intervention of policymakers.

20Based on Stuart and Ord (1994), Hollo et al. (2012) propose a transformation of raw stress

indicators based on their empirical cumulative distribution function.
21Robustness understood as the FSSI’s signalling stability is an essential property in the

day-by-day financial stress monitoring. An index that fulfills this property should always

recognize past stress episodes regardless of whether new observations continue to incorporate

themselves as time goes by.
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We count as an intervention all the measures taken by the Mexican authorities to

protect credit and stabilize the financial system during 2008 financial crisis. Table 10

presents the list of interventions considered. Finally, to account for the fact that stress

episodes do last for several periods, the methodology assumes a stress episode starts

four weeks before the intervention, and finishes four weeks after the intervention.

The logistic regression utilized to evaluate how the sub-indexes behaved during

stress event takes the form:

pt = P (β0 + βLLt + βV Vt + βCCt),

where L, V and C represent the level, volatility, and co-movement sub-indexes

respectively.

To construct the FSSI we use the coefficients obtained in the last equation as

weights to combine the three sub-indexes into the overall index. The latter can

be interpreted as a measure of the probability that financial markets are currently

experiencing conditions identical to those in previous periods of stress.

Kritzman et al. (2010) propose an alternative measure of systemic risk called the

absorption ratio (AR). This index is defined as the fraction of the total variance of a set

of assets returns which is explained or “absorbed” by a fixed number of eigenvectors.

The AR measures the fragility of the system in the sense that negative shocks propagate

faster and broader in a coupled market than in a loosely connected market.

The equation to calculate the AR is:

AR =

∑n
i=1

σ2Ei∑N
j=1

σ2Aj

,

where N is the number of assets; n is the number of eigenvectors used; σ2Ei is the

variance of eigenvector i; and
∑N

j=1
σ2Aj is the variance of asset j.

In order to estimate the AR, we used a rolling window of 200 weeks to estimate

the covariance matrix, and we fixed the number of eigenvectors to one. Also, given

the nature of the variables we use, the eigenvectors may not be associated with an

observable financial variable. This is not an issue because the goal of this index is not

to interpret the sources of risk, but to measure the extent to which sources of risk are

becoming more or less coupled.

The last index we analyze goes a step ahead and calculates the systemic risk of the

financial industry using portfolio theory. Hollo et al. (2012) introduce a FSSI named

Composite Indicator of Systemic Stress (CISS), its principal strength is that it focuses
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on the systemic dimension of financial stress, and adopts a statistical measurement

framework that captures some of the main characteristics of systemic crises.

This index comprises, from the point of view of the authors, the five most important

segments of an economy’s financial system: financial and non-financial intermediaries,

money markets, equity and bond markets, and foreign exchange markets. For our

application, as Mexico is sensitive to the financial stability at the United States and

Europe, we decided to include an extra segment.

The principal innovation of the CISS is the way it combines the sub-indexes

of distinct segments of the financial system into a single composite indicator using

standard portfolio theory, reflecting their time-varying cross-correlation structure. The

authors claim that the CISS is a more appropriate measure of systemic risk because

it assigns more weight to situations where stress prevails simultaneously at different

segments of the economy.

Considering the cross-correlation between all individual asset returns, and not

only their variances, the CISS distinguishes between a “horizontal” and a “vertical”

dimensions of systemic risk. According to Hollo et al. (2012) the first dimension

confines attention to the financial system, meanwhile the latter is focused on the

two-sided interaction between the financial system and the economy. Putting more

weight on systemic events allows us to identify the prevalence of financial instability

according to the “horizontal” view above-mentioned. Moreover, each sub-index weight

can be determined on the basis of its relative importance for real economic activity;

citing the authors, this “offers a way to capture the “vertical view” of systemic stress”.

Formally, yt and ω are two K×1 vectors, where K is the number of sectors, be the

a time-varying vector of sectoral indexes, and a static vector of weights, respectively.

Then, let St = ω
⊗
yt be a K × 1 time-varying vector of weighted indexes. The FSSI

will be calculated as

FSSIt = (S′
tCtSt)

−1/2,

where Ct is a time-varying K × K correlation matrix that could be easily evaluated

using a mulit-valued GARCH model. Finally, the vector of weight could be the result

of an optimization program that minimizes the difference between ω′yt and an index

of economic activity (EcActt),

min
t

T∑

t=1

(EcActt − ω′yt)
2,

subject to
∑K

i=1
ωi ≥ 0.
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Appendix C - Methodologies

Aramonte et al. (2013)

The authors propose a simple methodology to consolidate an arbitrarily set of FSSI.22

Its value added is two-fold. On the one hand, it allows us to deal and combine a wide

variety of indexes or indicators, irrespective of how each of them was constructed.

Additionally, as the proposed method reduces de number of indexes that a policy

maker should focus on, the interpretation of the resulting index should be more

straightforward. On the other hand, the methodology is simple and easy to code.

They use indexes from the financial market23 that should be correlated with other

macroeconomic activity indicators or with stock returns.

The methodology is comprised by three steps. Firstly, individually evaluate which

of the FSSIs help predict the economic activity or the stock returns, and eliminate

those that do not. Secondly, evaluate the fit of each FSSI, with a simple adjusted R2,

on the first principal component of all other FSSIs. With this step the authors wish

to identify those FSSIs that better explain the common variability of all the other

FSSIs that made through step one. The authors propose to rank all FSSIs according

to their adjusted R2, and only keep the best of them.24 And thirdly, using the same

principle of step 2, pick the set of FSSIs to construct a final index. In particular, the

authors propose to construct the power set of the set of the FSSIs that made through

step 2, and for each element of the power set evaluate the fit, again using a simple

adjusted R2, of its first principal component on the first principal component of the

rest of FSSIs that do not belong to that element of the power set.

Predictive Ability of the FSSIs.

To undertake this first step the authors suggest that the FSSIs should be analyzed

22Instead of Financial Stability Index they use the term Financial Conditions Index. In

abstract both terms are not necessarily identical, but from a practical point of view, their

methodology can be applied to a mixed set of indexes and indicators.
23Aramonte, Rosen and Schindler used the following indexes: Bloomberg U.S. Financial

Conditions Index, Bloomberg U.S. Financial Conditions Index Plus, Cleveland Financial

Stress Index, Morgan Stanley Financial Conditions Index U.S., Financial Market Stress

Index, National Financial Conditions Index, Adjusted National Financial Conditions Index,

St. Louis Fed Financial Stress Index, Kansas City Financial Stress Index, Citi Financial

Conditions Index, I.M.F. U.S. Financial Conditions Index, I.M.F. U.S. Financial Stress

Index.
24Theoretically there is no rule about how many of them to keep. In practice, we took the

upper half.
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in levels25 because only when they reach unusually high or low levels we will observe

real effects on the economy. On a variable basis, one starts evaluating the predictability

of lagged values of each FSSI on indicators of the macroeconomic activity, or of stocks

returns, based on simple linear regression model.26

yt = α+ β × FSIit−1 + ǫt, i = 1, . . . , N, t = 1, . . . , T

where yt is an indicator for the economic activity, or for the stock returns, at time t,

FSIit−1 is the one period lag of the ith financial stability index, and ǫt is the error

term also at time t.

Combining FSSIs.

The objective of the last two steps is to filter the FSSIs given a predetermined rule,

and then create a new index with them. In the second step the authors propose to

individually sort all FSSIs based on the information contained in the remaining FSSIs.

In the last step, they propose to identify the set of FSSIs that best summarizes the

information contained at the remaining FSSIs.

Now getting into the details, in the second step the authors measure the capability

of each FSSI to capture the information of all the other FSSIs, running the following

regression model, and calculating the respective adjusted R2,

∆PC−i
t = γ + δ ×∆FSIit + υt, i = 1, . . . , N, t = 1, . . . , T

where ∆FSIit is the first difference of the ith financial stability index at time t, and

∆PC−i
t is the first difference of the first principal component of all remaining FSSIs,

PC−i
t = fpc({FCIjt }j 6=i), and υt is the error term at time t.27 Having sorted all FSSIs

according to their adjusted R2 the authors propose to dismiss those at the bottom of

the list.

In the final step we select the set of FSSIs that jointly best capture the information

in the rest of FSSIs. For this, the authors construct the power set of the group of FSSIs

selected in step 2, and run the following linear regression

∆PC/∈C,t = λ+ φ×∆PC∈C,t + ϑt, i = 1, . . . , N, t = 1, . . . , T

25See Hatzius et al. (2010)
26On more technical grounds, one should correct for possible heteroskedastic standard errors,

and local-to-unity asymptotics
27As a robustness check the authors propose to repeat the same procedure but replacing the

dependent and independent variables by the one-lag autoregressive residuals of, respectively,

PC−i
t and FSIit .
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where C is an element of the power set, and ∆PC/∈C,t and ∆PC∈C,t are the first

differences of the first principal components of the FSSIs that do and do not belong to

C at time t, respectively, and ϑt is the error term at time t. Finally, elements of the

power set are sorted according to their adjusted R2, and we take the first on the list

to construct the final composite index.28

Drehmann and Juselius (2013)

The second methodology intends to select EWIs for banking crises. Arguably there

are a priori criteria to select EWIs, the authors posit that any EWI should satisfy

four characteristics. Firstly, they should have sound statistical forecasting power

for detecting unsustainable booms that may produce widespread disruptions to the

provision of financial services that may have serious consequences to the real economy.

Secondly, EWIs should have an appropriate timing, that is, their forecasting power

neither should arrive too late nor too early. The authors do not elaborate much

on what “too late or early” means. Thirdly, EWIs should be stable, that is, their

forecasting power should be increasing the closer one gets to a episode of financial

instability. Finally, EWIs should have a clear interpretation.

Ideally, we should know the costs and benefits of implementing different

macroprudential tools in order to identify the best EWIs. The authors argue that

currently this is unfeasible because we do not have a good understanding of the

macroprudential tools used so far, and those that remain to be used. A solution

for the impasse is to evaluate EWIs over a range of utility functions, that is, given

a particular utility the optimal decision must balance out a trade-off between Type I

and Type II errors generated by each EWI.

The methodology proposes to calculate the quality of the signal, which is inversely

related to the magnitude of the Type II error, associated to each EWI. The authors

use the Receiver Operating Characteristic (ROC) curve, which is a mapping between

Type I and II errors, to calculate the signals’ quality. In particular, the area under the

ROC curve (AUC) provides a quality measure very easy to interpret. Additionally,

the AUC is easy to calculate, and is already coded into common statistical softwares

such as Stata.29.

We will spend a few lines to formally define the AUC. The economy can be in

one of three states, Normal (B = 0), Boom (B = 1) or Crisis (B = 2). The policy

28To reduce the risk of overfitting, the authors propose to repeat the same procedure on

different subsamples and average the results.
29See Pepe et al. (2009a) and Pepe et al. (2009b)
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maker is only capable to know when the economy is in a Crisis, and can implement a

policy (P = 1) or not (P = 0). If he decides to implement it he must carry on with

a nonnegative cost, but the losses from a Crisis will be lower. Assume a particular

utility function of the policy maker U(P,B), where P is the policy, and B is the state

of the economy, that satisfies U(1, 1) > U(0, 1) and U(0, 0) > U(1, 0). The decision of

the policy maker is to determine a threshold θ > 0 such that, if the signal S is greater

than the threshold, the policy must be implemented.

Under this framework, the True Positive Ratio (TPR) is defined as TPRS(θ) =

P (S > θ | B = 1), and the False Positive Ratio (FPR) is defined as FPRS(θ) = P (S >

θ | B = 0). For low enough values of θ, TPR and FPR are close to one, and viceversa

for high enough values of θ. The ROC is the mapping from FPR to TPR for all possible

values of θ. The optimal level of θ is pinned down when the expected marginal rate

of substitution between the net marginal utilities of an accurate prediction in normal

times (B = 0) and booms (B = 1) is equal the slope of the ROC curve.

The AUC of signal S is given by:

AUC(S) =

∫
ROC(FPR(S))dFPR(S).

To conclude the presentation of the methodology the set of conditions an EWI

should satisfy are the following.30

Criterion 1: An EWI Si has the right timing if: AUC(Si,h) > 0.5 for some horizon

h ∈ [−20,−6].

Criterion 2: An EWI Si is stable if: AUC(Si,6−j) > AUC(Si,−6) > AUC(Si,−6+k)

for 1, . . . , 14 and 1, . . . , 5.

Criterion 3: EWI Si outperforms EWI Sj for horizon h if AUC(Si,h) > AUC(Sj,h).

Rothman et al. (2010)

The authors propose a sparse estimator of a multivariate regression coefficient matrix

that accounts for correlation of the response variables involving penalized likelihood

with simultaneous estimation of the regression coefficients and the covariance structure.

The classical regression model with one single response variable with a set of

prediction variables generalized to a set of multiple responses is given by

Y = XB +E

30The reader should recall that before we described one more criteria. The one that is missing

is “easy interpretation” and we do not include it explicitly.
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where Y is n × q matrix of n measurements of q random responses, X the n × p

predictor matrix, B ∈ R
p×q is an unknown regression coefficient matrix, and E the

n× q random error matrix with Ei

iid
∼ Nq(0,Σ).

Prediction requires to estimate pq parameters which becomes difficult when there

are many predictors and responses. Thus, to directly exploit the correlation in the

response variables to improve prediction performance, the authors propose a sparse

estimator for B that accounts for correlated errors by penalizing the negative log-

likelihood function by adding two penalties: i) one LASSO penalty on the entries

of B, and ii) a LASSO penalty on the off-diagonal entries of the precision matrix

Ω = Σ
−1,

(
B̂, Ω̂

)
= argmin

B,Ω



g(B,Ω) + λ1

∑

j 6=j′

|ωjj′|+ λ2

p∑

j=1

q∑

k=1

|βjk|



 ,

where λ1 ≥ 0 and λ2 ≥ 0 are the tuning parameters, and g(B,Ω) the negative log-

likelihood function given by

g(B,Ω) = tr
[
n−1(Y −XB +E)⊤(Y −XB +E)Ω

]
− log(Ω).

The LASSO penalty on B introduces sparsity in B̂, reducing the number of

predictors in the model. When λ2 = 0, B̂ = (X⊤X)−1X⊤Y . The LASSO penalty on

Ω has the effect of reducing the number of parameters in the precision matrix, which

is useful when q is large.

Rothman et al. (2010) present an fast algorithm for solving the non-convex

optimization problem, which is implemented in the R package MRCE.

Appendix D
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Table 6: Literature review of financial stress indexes, obtained from

Louzis and Vouldis (2012)

Authors
Country and

Period
Methodology Evaluation method

Bordo et al. (2002)
US

1790-1997

A yearly Financial Conditions Index (FCI)

was constructed as the sum of standardized

raw stress variables (using the median

instead of the mean).

-

Hanschel and Monnin

(2005)

Switzerland

1987-2002

The raw stress indicators were aggregated

into a single index using the variance-

equal weight method (taking the average

of standardized variables).

The identification of crisis peri-

ods was based on known facts and

the constructed index was compared

with these periods of high stress.

Illing and Liu

(2006)

Canada

1981-2005

Daily data from banking sector, foreign ex-

change, debt and equity markets were com-

bined into a Financial Stress Index (FSI)

using various methods (Principal Compo-

nents Analysis, credit weights, variance-

equal weights and transformations using

sample CDFs).

The various indices were compared

in terms of Type I and Type II errors

in signaling a crisis episode.

Nelson and Perli

(2005)

US

1994-2005

Twelve financial variables were utilized

to construct three subindicators combined

into a single probability index by estimat-

ing a logit model.

-

Cardarelli et al.

(2009)

17 Advanced

economies

1981-2009

A quarterly FSSI for each country was con-

structed as the average of seven equally

weighted variables grouped into three

subindices (banking sector, securities and

foreign exchange).

The episodes of financial stress iden-

tified by the FSI were compared with

major financial stress episodes iden-

tified in the literature.

European Central

Bank (2009b)

World’s main

29 economies

1994-2010

The raw stress variables for each country

were standardized and converted through

logistic transformation.

The identification of crisis periods

was based on known facts and the

GIFT was compared with these pe-

riods of high stress.

Hakkio and Keeton

(2009)

US

1990-2009
Principal Component Analysis.

The index was compared to known

periods of financial stress.

Brave and Butters

(2010)

US

1970-2010

An unbalanced panel of 100 mixed fre-

quency financial variables was used to

construct the Financial Conditions Index.

Kalman filter, EM algorithm and Harvey

accumulator techniques were utilized to

produce the index.

Markov-switching techniques were

applied to the FCI to identify finan-

cial crisis periods.

Lo Duca and Pletonen

(2013)

10 advanced

and 18 de-

veloping

economies

1990-2010

For each country the FSI was constructed

as the average of five stress components

transformed into an integer that ranged

from 0 to 3 according to the country

specific quartile of the distribution the

observation belongs to.

The index was compared to known

periods of financial stress.

Grimaldi (2010)
Euro area

1999-2009

A list of stressful events defining the crisis

periods were linked with sixteen market

variables through a logit model in order to

construct the weekly FSI, which shows the

probability of crisis.

The FSI was compared with the

implied volatility VSTOXX index

in order to assess its signal/noise

content.

Hatzius et al.

(2010)

US

1970-2010

A modified Principal Component Analysis

was used in order to combine 44 financial

stress indicators in a single FCI. The main

differences compared with other methods

are: (i) the use of an unbalanced panel of

financial variables, (ii) elimination of the

variability of financial variables that is ex-

plained by current and past real activity

and (iii) the aggregation of variables was

done using more than one principal com-

ponent.

The FCI was evaluated in terms of

the ability to forecast real economic

activity.

Hollo et al. (2012) Not reported

Five subindices consisting of money, bond,

equity, foreign exchange market data and

financial intermediaries data were used to

construct the indicator. The aggregation

of the subindices was based on the portfolio

risk theory.

-

Morales and Estrada

(2010)

Colombia

1995-2008

Three different weighting schemes

(variance-equal weights, principal com-

ponents and a qualitative response

approach) were used to construct a single

stress index.

Identification of known stress peri-

ods.
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Table 7: Inputs for Mexican Systemic Risk Index (DEF)
Sector Variable Description Per. Units Source

cuartil_prlv
Spread between the third and first quartile for

the 7 biggest average weekly interest rate.
Weekly BP BM

vol_prlv_bmu
Spread between the interest rate of long-term

obligations in national currency.
Monthly % BM

Credit

Institutions
cds_matr_7g

Average premium of hedge contract on 5 years for

BBV, Santander, HSBC and Citigroup.
Weekly Bp Bloomberg

acc_matr_7g

Average premium of hedge contract on 5 years

for Bank of America, Citigroup, Goldman Sachs,

JP Morgan, Merril Lynch, Wachovia and Wells

Fargo.

Weekly BP Bloomberg

foban_fogub

Weekly average differential between bank funding

interest rate and government funding interest

rate.

Daily %
BM and

Bloomberg

tiie_cetes
Weekly average differential between interest rates

TIIE 28 days and CETES 28 days.
Daily %

BM and

Bloomberg

cds_gobmex
Weekly average of government credit default

swaps.
Weekly BP Bloomberg

cds_privmex Weekly average of private credit default swaps. Weekly BP Bloomberg

Country Risk embi_mex
Spread between the yields from the Mexican

government bonds and the U.S. Treasury Bond.
Daily BP Bloomberg

petroleo_mex Oil Price, Mexican mix. Weekly BP Bloomberg

inv_ext_gub

Ratio of foreign investment in government instru-

ments and the total investment in these instru-

ments.

Weekly % BM

sws_5a
Real zero interbank swap (5 years) - Real zero

with SMP tax (5 years)
Daily BP Valmer

infsprd_10a
M bonds with taxes (10 years) - Real yield with

taxes (10 years)
Daily % Valmer

mex_10a6m Pending YTM (10 years - 6 years) Daily BP Valmer

vmex_10a Variation on the YTM’s M bond (10 years) Daily BP Valmer

Debt us_10a6m Pending zero USGov (10 years - 6 years) Daily BP Valmer

vus_10a Zero USGov volatility (10 years) Daily BP Valmer

ibs_5a IPAB bonds (5 years) - Bondes (5 years) Daily BP Valmer

spread_sup Short-term superior debt spreads Weekly BP BM

spread_inf Short-term inferior debt spreads Weekly BP BM

ipyc Main indicator for the Mexican Stock Exchange Daily %
BM and

Bloomberg

vol_ipyc Weekly average deviation of IPyC Weekly %
BM and

Bloomberg

Equity ipycsf_ipyc IPyC of financial services / IPyC Weekly %
BM and

Bloomberg

vix Financial indicator of expected volatility Weekly %
BM and

Bloomberg

vimex
Expected volatility of Mexican short-term equity

market
Daily %

BM and

Bloomberg

tdc
Weekly average exchange rate between MXN and

USD
Daily Pesos Bloomberg

Exchange rate vol_tc
Weekly average deviation of MXN/USD exchange

rate
Weekly

MXN/

USD
Bloomberg

volimpl_tc Exchange rate’s implicit volatility Daily
MXN/

USD
Bloomberg

pn_no_com
Net position for participant on exchange rate

futures
Weekly ContractsBloomberg

pa_fut_tiie28
Weekly average of the aggregate long and short

open positions
Daily ContractsBM

Derivatives swapito
Implicit interest rate in dolars at the 24 hours

Peso/Dolar swap
Daily %

Valmer,

Bloomberg

optasas_mkt Interest rate derivative in national currency Daily Pesos BM

optasas_otc Interest rate derivative in foreign currency Daily Pesos BM
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Table 8: Short description of all indexes used in the analysis
Source Type of inputs Main characteristics of the methodology

Drehmann and Juselius

(2012)

General statistics measur-

ing the indebtedness of the

private sector

Captures the burden imposed by debt more ac-

curately than other established leverage mea-

sures because it takes into account factors that

affect directly the borrowers’ repayment capac-

ity.

Hakkio and Keeton

(2009)

Financial variables cap-

turing key aspects of fi-

nancial stress.

The variables are combined into an overall

index assuming that financial stress is the main

cause for the variance in the variables.

Lo Duca and Pletonen

(2013)

Financial variables cover-

ing the main segments

of the domestic financial

market

The authors faced a trade-off between the

degree of precision of the index at the country

level, number of variables included, and the

degree of homogeneity of the index across

countries and time. The latter dimension

prevailed for them.

Carlson et al. (2012)

Financial series that cover

market liquidity, risk pric-

ing, and uncertainty

Incorporates the levels, comovement and

volatility of financial series. Its main contri-

bution is in the way crisis periods are selected;

for them a crisis period is when policy-makers

responsible for regulating financial institutions

intervened in the financial markets.

Kritzman et al. (2010) Equity returns

Using eigenvalues and eigenvectors, they mea-

sure systemic risk as the extent to which equity

return variance is explained by a fixed number

of eigenvectors.

Hollo et al. (2012)

Five market-specific

subindices created from

individual financial stress

measures

Generates the overall index using standard

portfolio theory, reflecting the time-varying

cross-correlation structure of different segments

of an economy’s financial system.
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Table 9: Used data along the constructed indexes
Variable Primary source Indexes where it is used

Spread of the 3-month interbank rate from the 3-month

Government bill rate

Bloomberg and

Banco de Mexico.

Lo Duca

KCFSI

Carlson

CISS

Realised volatility of the Mexican 2-year interest rate

swap: realised volatility calculated as the weekly average

of absolute daily rate changes

Bloomberg

KCFSI

Carlson

CISS

Spread between short-term corporate bond yields and 10-

year constant maturity Treasury yield

Bloomberg and

Banco de Mexico

KCFSI

Carlson

CISS

Volatility in short term corporate bond yields Banco de Mexico KCFSI

Implied/Expected volatility in the short term for the

Mexican Stock Exchange at the end of the trading day

(VIMEX)

Bloomberg
KCFSI

Carlson

Negative quarterly equity returns (multiplied by minus

one, so that negative equity returns increase financial

stress; positive returns are disregarded and set to 0)

Bloomberg and

Banco de Mexico

Lo Duca

KCFSI

Carlson

Realised volatility of the Mexican peso exchange rate vis-

a-vis US dollar

Bloomberg and

Banco de Mexico

Lo Duca

KCFSI

Carlson

CISS

Realised volatility of the yield on the 3-month Government

bill

Bloomberg and

Banco de Mexico

Lo Duca

Carlson

Realised volatility of the yield on the 3-month interbank

rate

Bloomberg and

Banco de Mexico
CISS

Realised volatility of the governmental funding rate Banco de Mexico CISS

Realised volatility of the 10-year Treasury yield Bloomberg CISS

Spread between the short term corporate bond yields and

the 3-month Government bill rate

Bloomberg and

Banco de Mexico
CISS

Realised volatility of the non-financial sector stock market

index
Banco de Mexico CISS

CMAX for the Datastream non-financial sector stock

market index: maximum cumulated index losses over a

moving 2-year window calculated as CMAXt = 1 −

xt/max[x ∈ (xt−j | j = 0, 1, ..., T )] with T = 104 for

weekly data

Banco de Mexico CISS

Realised volatility of the principal stock market index
Bloomberg and

Banco de Mexico
CISS

Realised volatility of the equity return of the bank sector

stock market index over the total market index

Bloomberg and

Banco de Mexico
CISS

CMAX of the Mexican MEXBOL Price to book ratio Bloomberg CISS

Realised volatility of the Mexican exchange rate vis-a-vis

Japanese Yen and European Euro

Bloomberg and

Banco de Mexico
CISS

Stablished European and North American FSI’s: SLF FSI,

KCFSI, CFSI, EASSEQUI, EASSBOND and EASSFINI
Bloomberg CISS
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Table 10: Date Intervention
Date Intervention

2008-2009

Sociedad Hipotecaria Federal (a financial institution belonging to the

development banking sector) decided to support and refinance non-bank

home mortgage institutions to meet their closest maturing liabilities.

Furthermore, it extended medium-term credit lines for bridge funding,

and long-term financing for individual loans.

October, 2008

Banco de México accepted new assets as collateral on liquidity loans

at a rate of 1.1 times the one day target rate determined by Banco de

México’s Board of Governors. Monetary Regulation Deposits and other

securities affected by the crisis were among the new type of collateral

accepted.

October, 2008

Banco de México agreed to operate interest rate swap auctions to

mitigate the impact of fluctuations in the long-term fixed rate yield

curve.

October, 2008

Actions were taken to mitigate liquidity problems in domestic markets

due to deteriorating conditions for accessing domestic and external

financing.

October, 2008
The Federal Government announced a program to buy back Udibonos

and Bonos M through Banco de México.

October 30,

2008

The National Banking and Securities Commission (CNBV) issued a new

rule allowing the purchase and sale of government securities between

mutual funds and financial firms belonging to the same financial group

during a six-month period.

April 17, 2009

The International Monetary Fund approved a Flexible Credit Line for

Mexico equivalent to 31.528 billion of Special Drawing Rights (around

47 billion dollars) over a one-year period with the possibility of renewal.

April 21, 2009

Through a dollar credit auction mechanism Banco de México offered

commercial and development banks dollars from the swaps obtained from

the U.S. Federal Reserve.

Source: Banco de México, 2009 Financial System Report.
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Figure 12: Threshold 2 Figure 13: Threshold 3

Figure 14: Threshold 4 Figure 15: Threshold 5

Figure 16: Threshold 6
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Figure 17: dummy indicators
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Note: We present the AUC at the vertical axis, and the number of weeks before a

crisis occurrence at the horizontal axis. Red dashed lines represent 95% confidence

intervals.

Figure 18: Indicators of DEF using VIMEX
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Note: We present the AUC at the vertical axis, and the number of weeks before a

crisis occurrence at the horizontal axis. Red dashed lines represent 95% confidence

intervals.

Figure 19: Indexes using VIMEX
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Note: We present the AUC at the vertical axis, and the number of weeks before a

crisis occurrence at the horizontal axis. Red dashed lines represent 95% confidence

intervals.

Figure 20: Indexes using IPC
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Figure 21: KCFSI
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Figure 22: FFSSI
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Figure 23: CISS
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Figure 24: Lo Duca
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Figure 25: Absorption Ratio
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Figure 26: Carlson
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Note: We present the AUC at the vertical axis, and the number of weeks before a

crisis occurrence at the horizontal axis. Red dashed lines represent 95% confidence

intervals.

Figure 27: Indicators’ AUC using EMBI as the dummy indicator
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