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1 Introduction

The seminal contribution of Sims (1980) popularized the use of vector autoregressive models
(VARs, hereafter) on macroeconomic data. Among other applications, we use VARs to mea-
sure the effects of different structural shocks on the economy, and we identify these shocks
through restrictions that transform the reduced-form model into a structural VAR model, or
SVAR. In particular, for a monetary policy shock,! we can classify the identifying restrictions
into two great categories: those that exclude output and inflation to respond to the shock in
the impact period, but permit lagged responses in subsequent periods; and those that allow
all endogenous variables to respond in the impact period and thereafter. Exclusion restric-
tions, like those proposed by Bernanke and Mihov (1998), Christiano et al. (1999), or Sims
and Zha (2006), belong to the first category, while sign restrictions, as introduced by Faust
(1998), Canova and De Nicol6 (2002), or Uhlig (2005), correspond to the second category.
A vast amount of evidence has been gathered for large economies, while there are fewer
studies focusing on small open economies (SOEs, for short). Among them, Cushman and
Zha (1997), Gaytan and Gonzélez (2006), and Berument (2007) use exclusion restrictions
to measure monetary policy shocks in Canada, Mexico, and Turkey, respectively; while Ho
and Yeh (2010) use sign restrictions to identify the said shocks in Taiwan; and Bjgrnland and
Halvorsen (2014) use a combination of sign and exclusion restrictions for Australia, Canada,
New Zealand, Norway and the U.K.

While these applications are useful benchmarks, they do not study the advantages of us-
ing either exclusion or sign restrictions in SOEs. For instance, we do not know which class
of identifying restrictions is more robust when home and foreign innovations are correlated,
or how accurate the identified SVARs are when we include or omit certain foreign variables
in estimation. In the same vein, we have not fully explored the consequences of using identi-
fying assumptions that mismatch the timing of responses of the actual economy. The lack of
thorough responses to these questions is surprising, given the number of SOEs that conduct
monetary policy to keep home inflation on track.? In this context, inflation-targeting SOEs
need reliable tools to measure the transmission mechanism of monetary policy on home vari-

ables, and the absence of papers on this topic is worrisome. An exception is the study of

!Other structural shocks have also deserved a fair amount of attention, like a technology shock, a
government-spending shock, an oil price shock, etc.

’For instance, in 2012 there were 27 SOEs with an inflation-targeting regime. See
http://www.bankofengland.co.uk/education/Documents/ccbs/handbooks/pdf/ccbshb29.pdf.



Jadskeld and Jennings (2011), who compare exclusion and sign restrictions on simulated data
for Australia, and partially answer the questions stated above. In this paper, we seek to pro-
vide thorough answers to these questions.

In particular, we determine the conditions under which a SVAR, identified with exclu-
sion or sign restrictions, reliably measures monetary policy shocks in SOEs. For exclusion
restrictions, we focus on their recursive type, which builds on the Cholesky decomposition
of the variance-covariance matrix of the VAR.? For sign restrictions, we evaluate two types:
standard sign restrictions, which constrain the sign but not the size of the responses of en-
dogenous variables; and elasticity-bounded sign restrictions, which impose the standard signs
but also limit the size of some responses that otherwise would seem implausibly large. These
type of augmented sign restrictions, for short, were introduced by Kilian and Murphy (2012)
for oil price shocks. Further, Baumeister and Hamilton (2014) recommend to use prior beliefs
regarding the elasticity of certain variables to discriminate among candidate sign-identified
models. In our analysis, we take a similar approach for the case of a monetary policy shock,
and we use prior information for the short-run interest-rate elasticity of inflation.

We split our analysis into two parts, one is a Monte Carlo exercise with simulated data
for output, inflation, and the short-term nominal interest rate from a hypothetical small open
economy, and the other is an application with Mexican data. In the case of the Monte Carlo
exercise, we simulate a thousand of small samples in which we variate the timing of responses
of the data generating process, or DGP. In one DGP, output and inflation react to the monetary
policy shock in the impact period, while in the other DGP these variables react only with one
period lag. Notice that sign restrictions match the timing of the first DGP and exclusion
restrictions match the timing of the second one. For each simulated sample, we estimate
a reduced-form VAR with foreign variables, as Cushman and Zha (1997), and another one
without foreign variables, as Ho and Yeh (2010). Then, we identify SVARs using each set
of identifying assumptions. Our intention is to measure the accuracy of a SVAR when its
timing matches or mismatches the timing of the DGP, and when it includes or omits foreign
variables. In the second part of our analysis, we apply the identifying assumptions to Mexican

data, and document the similarities between the results of the first and the second part.*

3 Although recursive restrictions are just one type among many other exclusion restrictions, our results might
apply to all types of restrictions that preclude output and inflation to respond to a monetary policy shock in the
impact period.

*Mexico is a fine example of a SOE, with a GDP nine times smaller than that of the U.S. (its major trading
partner), a floating exchange rate, a dynamic exporting sector, and with an inflation-targeting regime.



Four main results stand out, of which the first three refer to the Monte Carlo experiment
and the last one to the empirical application. First, when exclusion restrictions match the
timing of the DGP, they accurately measure the actual responses of the economy to a mone-
tary policy shock. However, the identification depends critically on whether foreign variables
have been included in the estimation. This is the case because the variance-covariance matrix
of the VAR without foreign variables is biased when foreign and home innovations are corre-
lated. Adding relevant foreign variables, like those that highly correlate with home variables,
corrects the bias and allows exclusion restrictions to identify the shock.

Second, we find that standard sign restrictions deliver responses of inflation that systemat-
ically overshoot those of the DGP, and responses of the nominal interest rate that undershoot
those of the DGP. We fix these issues by adding a size restriction, in the spirit of Kilian and
Murphy (2012), to the first response of inflation after the monetary policy shock. The size
constraint builds on an estimated measure of the interest-rate elasticity of inflation, and helps
to rule out sign-identified SVAR models that imply implausibly large responses of inflation
with respect to the data. With this device active, augmented sign restrictions accurately mea-
sure the responses of inflation and the nominal interest rate of the DGP. Further, and in sharp
contrast with exclusion restrictions, augmented sign restrictions seem to identify the mon-
etary policy shock even when we omit foreign variables in estimation. We argue that this
surprising result is explained by the fact that the imposed signs, which are supported by eco-
nomic theory, act as auxiliary instruments that help to correct the bias of the VAR without
foreign variables. Including foreign variables in the VAR is nevertheless useful because it
shrinks the uncertainty bands of the responses of the sign-identified SVARs.

Third, augmented sign restrictions are more robust to measure the monetary policy shock
when the timing of the DGP is unknown. This is the case because, when exclusion restrictions
mismatch the timing of the DGP, they deliver responses of output and inflation that are in
general smaller, and with delayed peak effects, as compared to those of the actual DGP. In
addition, in this environment, exclusion restrictions do not rule out the presence of a price
puzzle, although the actual DGP presents none. In contrast, when augmented sign restrictions
mismatch the timing of the DGP, they predict responses of output and inflation that follow
relatively close those of the actual DGP, and they correctly rule out the presence of a price
puzzle.

Finally, the estimated SVARs with Mexican data yield similar results to those of the

Monte Carlo experiment. For instance, the responses issued by sign restrictions are more



stable than those of exclusion restrictions when we omit or include foreign variables, but in
the latter case uncertainty bands are thinner. In the same vein, exclusion restrictions do not
discard a price puzzle, while augmented sign restrictions reduce this possibility substantially.
And last, the responses of inflation and the nominal interest rate from the standard sign and
augmented sign restrictions differ in the same way as in the Monte Carlo experiment.

To the best of our knowledge, the closest analysis to ours is Jadskeld and Jennings (2011),
who find caveats similar to ours for both exclusion and standard sign restrictions with sim-
ulated data in a monetary SVAR. For instance, exclusion restrictions point to a price puzzle
when there is none in the model economy, while standard sign restrictions exaggerate the size
of the responses of certain variables. Although our findings are complementary, a caveat of
Jadskeld and Jennings’s approach is that their DGP let all variables to react to the shock in
the impact period, which invalidates by construction exclusion restrictions. In our framework,
we give both sets of identifying assumptions equal chances of success ex ante by letting the
timing of the DGP vary. This generalization allows us to test the robustness of each type of
identifying restrictions. Also, Jddskeld and Jennings do not study the role of foreign variables
on the performance of the SVARs, as we do here.

The remainder of the paper is as follows. Section 2 introduces the VAR model with block-
exogeneity, the recursive type of exclusion restrictions, and some of the latest findings on the
implementation of sign restrictions. Section 3 introduces the Monte Carlo exercise that we
use to compare the accuracy and robustness of the identifying restrictions, and presents our
main results. Section 4 discusses our estimated results with Mexican data and compares them

with the Monte Carlo exercise. The final section concludes.

2 VARs and SVARs

In this section, we describe the reduced-form VAR models and the set of assumptions of
the structural VARs that we use in this paper to identify a monetary policy shock, namely,
exclusion restrictions and sign restrictions.’ For the former, some variables are not allowed
to respond on impact to the shock, while for the latter all variables may answer on impact

to the shock. Since our focus is on small open economies (SOEs), we investigate the ef-

3The VARs models we use here do not distinguish differences between positive and negative shocks, which
is a limitation of our analysis. However, the main objective of this document is not to identify potential asym-
metries on the effect of a monetary policy shock, but to compare the ability of these methodologies to identify
the said shock in equal circumstances.



fect of adding foreign variables on the performance of each set of identifying assumptions.
Therefore, we consider two types of VAR models: a simple VAR, which includes only home
variables; and a VAR with exogenous variables, which includes both home and a set of block-

exogenous (foreign) variables. We start our description with the simple VAR.

2.1 Reduced-form VAR models
2.1.1 Simple VAR

Let Y; be a vector of n endogenous variables at time ¢, and assume that the dynamics of Y;

follow a vector autoregression (VAR) of the form

p
Yi=c+ Y AYi,+e, ()
=1
where ¢ is a vector of constants, A, denote n x n matrices of coefficients, and ; is a

vector of reduced-form innovations, with mean zero (i.e., E {¢;} = 0), not autocorrelated
(E {e&,_,} = 0, for £ # 0), and with a variance-covariance matrix given by E {e,c}} = Q,
where the super index s stands for simple VAR. We estimate this system through maximum
likelihood, which in this case implies to run an OLS regression on each equation. We refer to
the joint distribution of parameters of the simple VAR as I'4(0,), where O is a vector with

all the parameters of the reduced-form model.

2.1.2 VAR with exogenous variables

Let Z; be a vector of m foreign variables that affect the home variables in Y., for & > 0,
but in contrast the elements of Y; do not affect any of the values in Z;,,. It is said that
Zy is block-exogenous to Y; because the elements of the latter are uninformative about the
values of Z,,,. For a small open economy, this is likely to be the case. In addition, it is
also likely that foreign shocks are correlated with home shocks, causing a business cycle
co-movement between foreign and home economies.® Block-exogeneity is represented in a

vector autoregression model as follows:

p p
Y, = c+ Y AYi+) BiZii+e, 2)
/=1 /=1
p
Zy = [+ DiZiyg+n, 3)
/=1

®For instance, strong trade ties might increase the correlation between foreign and home economic activities.
See Blonigen et al. (2014).



where f is a vector of constants, and D, and B, are m x m and n X m matrices of parameters,
respectively, and 7, is a m X 1 vector with foreign innovations. For the error terms, let
&, = [n, &)’ be the vector of reduced-form innovations with mean zero (E (£;) = O(nm)x1),
not autocorrelated (E {{’tf;_e} = O(n+m) for £ # 0), and with a variance-covariance matrix

equal to

plegt=a=| 9 Gl

&n
where (), is the m x m variance-covariance matrix of foreign innovations 7,, {2, isan x m

matrix with the covariances of home and foreign innovations (with an = ,.), and €% is
the n x n variance-covariance matrix of home innovations, where the super index e refers to
the VAR with exogenous variables. Hamilton (1994), ch. 11.3, presents a 3-step algorithm
to estimate this constrained VAR model through maximum likelihood. First, we obtain the
estimates f , Dy, and Qn by estimating system (3) as a simple VAR. Second, we set and

estimate an auxiliary system, of the form

p p
Yi=g+GoZi+ Y GyYie+ Y GriZii+e, )

=1 =1
through OLS equation-by-equation to obtain g, Go, Gy,g, G 74, and H= % Zle é.é;, where
T is the number of observations in the system. The latter corresponds to the residuals’
variance-covariance matrix of the auxiliary system. Finally, the parameters of interest c,

Ay, By, Qeyy, and €2 are obtained as follows:

an - GDQm (5)
A A A A _1 a
c = g+ an <Qn> 5 (6)
R . o AL
B, = Ggzo+ €y (Qn> Dy, (7
Ay = Gy,e, ()
R N
O = B0 () O )

It is straightforward to verify that if G = 0, then the error terms 7, and €, are uncorrelated
(an = 0) and the structural parameters can be obtained directly from the auxiliary system
(4),as ¢ =g, Bg = Gzz, Ag = Gyg, and Qg = H. However, when Qan # 0, it is important to
follow the three steps suggested by Hamilton (1994) to avoid a bias in the estimated variance-
covariance matrix of the home reduced-form errors, Qg. This point is particularly important

for the identifying assumptions embedded by exclusion restrictions, since in this approach
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the information required to identify shocks originates only from Qg. We denote the joint

distribution of parameters of the VAR with exogenous variables as I'.(O,).

2.2 Structural VARs

It is well known that we cannot observe structural or fundamental shocks, such as a monetary
policy shock, from the vector of reduced-form innovations ¢, of the VAR models (1) and
(2). The reason is that each element of ¢, is a combination of structural shocks. The shock-
identification strategy consists, thus, in finding a mapping Ay that links the reduced-form
VAR home innovations, &, to a set of fundamental innovations, v;, from a structural VAR (or
SVAR) model, i.e.,’

gy = Agvy.

In a monetary SVAR, it is typically assumed that vector ¢; can be stated as a contempora-
neous, linear combination of v;, which is in turn a vector of n uncorrelated home structural
shocks, with unit variance (i.e., E {v;v}} = I,,). The reduced-form home innovations of
both the simple VAR and the VAR with exogenous variables can be mapped to the structural

shocks in such a manner. Notice that the variance of ¢, is equivalent to

E{z:}} AE {v0,'} Al or simply
0. = AAL (10)

Since many matrices A solve the system of equations (10), the identification of an eco-
nomically meaningful structural shocks requires to impose constraints on the elements of

matrices A, as we describe next.

2.2.1 Identification through exclusion restrictions

A simple and common approach is to assume exclusion restrictions, which impose enough
zero entries in matrices 4, so that only one matrix A solves equation (10) . Interestingly,
a matrix with a sufficient number of zeros is the lower-triangular Cholesky decomposition of

matrix ., which we denote by A, = chol(fls). This structure is also a recursive one, since

"The relationship between the reduced-form VARs and the SVAR is evident if we pre-multiply system (2)
with matrix A,;l, ie.,

p P
AT, = A (c +Y AYi Y BZZM> + vy

/=1 =1



€1t = A11VU14, €24 = A1V + G222, and so on, where a;; is the (7, j) entry of matrix A..
The implication of this assumption for the structural impulse responses is straightforward:
variables that are ordered before a particular structural shock do not answer to this shock on
impact.

Christiano et al. (1999, 2005) use a Cholesky decomposition to identify a monetary pol-
icy shock in the U.S. In this paper, we apply these recursive restrictions to a small open
economy. However, other researchers have adopted different assumptions with exclusion re-
strictions. For instance, Cushman and Zha (1997) follow the identification strategy of Leeper
et al. (1996), summarized in Sims and Zha (2006). These authors estimate a policy reaction
function prior to the estimation of the reduced-form VAR, and then use the information of the
former to identify the monetary policy shock. Cushman and Zha argue that the identification
a la Sims and Zha helps to account for simultaneous reactions between the nominal interest
rate and the nominal exchange rate. Cerdeiro (2010) applies the identification strategy of
Bernanke and Mihov (1998) to the case of Argentina. The approach consists in using oper-
ating information of the central bank to produce a data-based index of policy. This index is
used later in the reduced-form VAR to identify the monetary policy shock. In our framework,
we stick to the Cholesky decomposition due to its simplicity, and because in our estimations
with Mexican data in Section 4 we did not find an “exchange rate puzzle” after a shock in
monetary policy, as it was the case in other studies (see Jadskeld and Jennings, 2011, and
the refereces therein). Similarly, Berument (2007) uses the recursive Cholesky approach for
Turkey, and exploits the spread between the short-term nominal interest rate and the nominal

exchange rate depreciation as a measure of monetary policy tightness.

2.2.2 Identification through sign restrictions

Faust (1998), Canova and De Nicol6 (2002), and Uhlig (2005) first used sign restrictions to
identify monetary policy shocks in the U.S.® Sign restrictions do not impose zero entries in
matrix Ay. Instead, they constrain the sign of certain elements of .4, to obtain outcomes
predicted by economic theory. It is common to constrain the sign of the response of endoge-
nous variables to a structural shock in the impact period. For instance, we look for a matrix
Ay, so that a;ju;; > 0 (or < 0), which means that variable 7 rises (or decreases) at time ¢

after a positive innovation of structural shock v;,. Typically, researchers choose to restrict

80ther applications for sign-identified SVARs can be found in Farrant and Peersman (2006), Peersman and
Straub (2009), or Kilian and Murphy (2012).



responses that are sign-robust across different models, and avoid to impose restrictions on
ambiguous responses (see Canova and Paustian, 2011). As a sign restriction is more flexible
than an exclusion or zero restriction, there exist potentially many matrices A, that satisfy the
required signs and solve equation (10). Thus, sign restrictions weakly identify SVARs, and
achieve only set-identification. This property poses problems to decide which one of all sign-
identified matrices A;, may be the most representative to capture the aggregate dynamics after
a structural shock. Kilian and Murphy (2012) propose to add size restrictions to the elements
of matrix Ay, such that the elasticity of certain variables remains within the range of those
observed in the data. This extra information may help to fine-tune the set of accepted matrices
Ay, as the number of models that generate economically implausible responses decreases.’
We will come back to this point in the next section.

We follow closely the procedure of Rubio-Ramirez et al. (2010) to obtain sign-identified
matrices A4y, which is a generalization of Uhlig (2005)’s procedure. Our algorithm is the

following.

Algorithm 1 Consider H draws from the joint distribution of parameters I';(©;), for j €
{s, e}, of the reduced-form VAR.'® Then, follow the next steps:

1. For each draw h € {1,...,H} of T';(©;), find a random n x n matrix Ry, from the
standard normal distribution, and compute the orthonormal matrix Qy, from the () R-
decomposition of Ry, so that Q. Qi = L

A~ A

2. The candidate matrix is given by A, = chol(§2:)Q}, where chol(S2.) is the lower-
triangular Cholesky decomposition of matrix Q.. Compute impulse responses using
Ay, and check whether these responses satisfy the imposed sign restrictions. If they do,

keep Ay; if they do not, drop Ay, and find a new matrix R
3. For draw h, repeat steps 1 and 2 until finding a total of {Ak}szl matrices, for K > 1.

4. From the latter set, seek a matrix Ay, so that

A, = argmin (vee (Apeq) — vee (Ar))?,
Ape{Ais,

°In addition, Fry and Pagan (2011) suggest finding the model with the impulse responses closest to the
median responses as a representative model. Baumeister and Hamilton (2014) suggest using prior information
about the elasticity of responses of certain variables in order to measure the plausibility of the candidate sign-
restricted models.

10An estimate of I';(©;) can be obtained through Gibbs sampling for bayesian VARs, or bootstrapping for
classical inference. In our empirical application, we follow the latter.
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where A,,.q Is a matrix composed of the median value of each entry of all matrices in
{Ak}le . Keep Ay, and drop any other Ay, # Aj,.

The result of the algorithm is a set { A, }2L | of sign-identified matrices, each of which is
the closest to the median of its respective draw h. The original algorithm of Rubio-Ramirez
et al. (2010) contain only steps 1 to 3. Their procedure features both virtues and caveats.
Among the virtues, Arias et al. (2014) show that each sign-identified matrix A is a draw
from the posterior distribution of structural parameters conditional on the sign restrictions,
and thus the uncertainty of the procedure is properly taken into account. Further, the com-
puting timing decreases substantially as compared to Uhlig (2005)’s procedure. A caveat,
as pointed out by Baumeister and Hamilton (2014), is that the inherent composition of ma-
trix Q. yields sign-identified impulse responses that follow truncated Cauchy distributions.
In other words, the econometrician may be imposing more prior information than what she
might be aware of, as the restricted responses might not only be greater or smaller than zero,
but also inside a finite interval. To see this graphically, Figure A.1 in the technical appendix
shows the distribution of impact responses of output, inflation, and the nominal interest rate
to a monetary policy shock that resorted from a random draw A of the Monte Carlo exercise
of Section 3. The truncation of these distributions in the upper panel is visible, and we have
verified that it does not vanish as we increase the sample size (as predicted by Baumeister
and Hamilton, 2014). Step 4 in Algorithm 1 builds distributions for the posterior responses
that are close to normal, centered around the median responses of each draw h, thus greatly
reducing truncation (see the bottom panel of Figure A.1 of the technical appendix). Further,
Section 3.2 shows that Algorithm 1 can successfully recover the true impulse responses of
the data generating process, provided that we include prior information about the interest-rate
elasticity of inflation in the sign restrictions procedure.

A common practice of sign restrictions is that, to increase accuracy, it is recommended
to identify several shocks even if the researcher cares only about a single type of them (see
Canova and Paustian, 2011). Also, a variance decomposition can only be estimated as long
as there are as many identified shocks as variables in the SVAR (see Fry and Pagan, 2011).

In the context of SOEs, Ho and Yeh (2010) apply sign restrictions to measure mone-
tary policy for Taiwan; Jddskeld and Jennings (2011) compare sign restrictions with exclu-
sion restrictions in a simulated sample from an estimated DSGE model for Australia; while
Bjgrnland and Halvorsen (2014) use a hybrid strategy of exclusion and sign restrictions to

identify the effects of monetary policy and exchange rate shocks on Australia, Canada, New
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Zealand, Norway, Sweden and the U.K.

3 A controlled Monte Carlo experiment

In this section, we investigate the conditions that allow a SVAR for a small open economy
to identify the effects of an exogenous shock to monetary policy on output, inflation, and the
nominal interest rate. We do so through a controlled experiment, in which we simulate data
from two hypothetical small open economies, which differ only on the amount of information
agents have when taking decisions. In one economy agents hold lagged information and
react with one period delay to the monetary policy shock; in the other economy, agents have
complete information and respond to the monetary policy shock within the same period.
Exclusion restrictions imply a timing for the impulse responses to a monetary policy shock
that corresponds to the first economy, while sign restrictions imply a timing coherent with the
second economy. We analyse the performance of each set of identifying assumptions under
two scenarios: when their implied timing is correct (i.e., it corresponds to that of the data
generating process, or DGP, for short), and when their implied timing is incorrect.'! We also
investigate how adding a set of exogenous variables changes the performance of each set of

identifying assumptions.

3.1 A hypothetical small open economy

Consider the following reduced-form relations describing the dynamics of output, y;, infla-

tion, 7, and the nominal interest rate, ¢;, of a small open economy,

v = (1=7) Ber{g} + 7,001 — 0 ' Bg {ie — T} + ayf + ey,
T — Va1 = BBy {7Tt+1 - %Jt} + KYt + Ent,
iv = plir+(1—p) (Uﬂﬂt + nyyt) + Eits

where y; is foreign output. The model economy consists of a New-Keynesian IS curve,
a Phillips curve, a Taylor rule, and faces aggregate demand shocks ¢, ;, cost-push shocks
€rt, and monetary policy shocks €;,. The foreign-output term in the IS curve implies that

when foreign income increases, so does home income too, since exports demand is higher.

NTizskeld and Jennings (2011) perform a similar exercise to ours, but their complete-information DGP in-
validates by construction exclusion restrictions. In our case, we give both identifying approaches equal chances
by letting the timing of the DGP vary.

11



Although the model is deliberately stylized, it captures the essence of the small open economy
portrayed in Gali and Monacelli (2005). In contrast with their framework, we have added
intrinsic inertia in output and inflation (v, > 0, for z € {y,7}), a feature of the data that
usually emerges in empirical works, and we make explicit the influence of foreign output
on home output. We use the following calibration: 5 = .995, 0 = 6, k = .025, p = .8,
N. = 15 n, = .57, =.5 7, = .35 and a = .8. All of these values, except for the last
one, are within the ballpark of those used in the New Keynesian literature (see Canova and
Paustian, 2011). For «, we chose a relatively high value in order to increase the correlation
between foreign and home output, which accounts for the observed strong business cycle co-
movement between trading partners (see Blonigen et al., 2014). For the simulated samples,
the correlation between y; and y; varies around .80 and .95. Interestingly, for the Mexican
case, later studied in the paper, the correlation between home and U.S. output, both in gap
measures, is around 0.88. We calibrate the shocks as mildly persistent processes, with unitary
variances.!?

Notice that the expectation operator E,;_j, conditional on information gathered £ periods
ago, implies different responses of home variables to shocks as k varies. For instance, as-
sume that in time ¢ there is a positive monetary policy shock innovation, €;; > 0. If £ = 0,
agents realize that the nominal interest rate has risen and cut their demand, putting downward
pressure on prices within the same period. In contrast, if £ = 1, agents in time ¢ are not
aware that the nominal interest rate has changed, and do not adjust their demand, leaving
prices unaffected. In this case, the adjustment only starts in period ¢ 4+ 1 and continues there-
after. The parameter & indicates two different states of nature that imply different responses
of home variables to all shocks in the economy. These responses are shown in Figure 1,
where we label the state £ = 1 as the lagged information economy, and the state £ = 0 as
the contemporaneous information economy. Notice that, after a monetary policy shock (row
1 in Figure 1), the impact responses of output and inflation in the lagged information econ-
omy are zero, and thereafter smaller in size than their counterparts in the contemporaneous
information economy.

Exclusion restrictions imply delayed responses of output and inflation to a monetary pol-

icy shock that corresponds to the timing of the lagged information economy, as Figure 1

12For all shocks, we use AR(1) processes. For €yt and e 4, the persistent parameter equals .5, while for €; ¢
it equals .2. The latter implies that neither the demand shock or the cost-push shock are very persistent, while
the monetary policy shock denotes a short-lived deviation from the monetary policy rule. This last feature has
being found in empirical applications.
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Figure 1: Responses to structural shocks in two hypothetical SOEs
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Note: The figure shows the responses of the output gap, home inflation, and the nominal interest rate of two small open economy models
to shocks to monetary policy (row 1), to the aggregate demand (row 2), and to the marginal cost of home producers (row 3). The two
models are essentially the same, but differ on the information available to agents when taking decisions. In the lagged information economy
(plain line) agents hold outdated information about macroeconomic shocks, while in the contemporaneous information economy (line with

circles) agents hold updated information.

13



shows. Similarly, sign restrictions allow for contemporaneous responses of output and in-
flation, and match the timing of the contemporaneous information economy. The exercises
in the next subsection discuss the virtues and caveats of using both identifying assumptions
when the DGP is conditioned on either £ = 0 or k = 1.

Finally, to close the model, we assume that the foreign economy is isomorphic to the
home economy, with the difference that home output does not affect foreign output. That is,

we assume that the foreign economy is block-exogenous to the home economy

v = =9 Ef{yia}+wi—o B {ii =70} +e5
T = VaTi_1 = PEi {77':“ - %r”?} + Ky; + 5;,157
if pis_y + (1= p*) (0.7} +n,7) +€5es

where the super index * denotes a foreign variable. We consider a complete structure of the
foreign economy because we investigate the properties of adding different subsets of foreign

variables into the VARS in the next subsection.

3.2 The experiments

We performed our Monte Carlo experiments as follows: we ran 1,000 simulated samples,
with 200 observations each, for each state of nature described above: the lagged information
economy, and the contemporaneous information economy.'? For each sample, we ran a sim-
ple VAR with only home variables (i.e., with Y; = {y;, 7;,4;}), and a VAR with all variables,
home and foreign, in the lines of section 2 (i.e., with Y; = {y;, 7,4, } and Z; = {y}, 7}, i} }).
We include 4 lags in the VARSs to ensure that the reduced-form VAR models capture the dy-
namics of the DGP, although the results are qualitatively similar when we consider 2 or 3 lags
in the VARs. Then, we apply exclusion restrictions and sign restrictions separately in each
VAR. For exclusion restrictions, the variables are ordered as y;, 7, and 7, i.e., we assume that
output and inflation do not respond to the monetary policy shock in the impact period, while
the nominal interest rate does. For sign restrictions, we identify a monetary policy shock, a
transitory supply-side shock, and an aggregate demand shock. Each of these shocks is mir-
rored in the model by €, , €+, and ¢, ;, respectively. The signs we use for identification are

inspired by Figure 1 and are fairly robust across different models (see Canova and Paustian,

3The initial values of the system variables equal the steady-state equilibrium, which is normalized to zero.
We used a burning period of 100 observations, which is enough to eliminate the effects of the initial values on
the simulated aggregated dynamics.
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2011). That is, after a contractionary monetary policy shock, output and inflation fall while
the nominal interest rate increases; in turn, after a positive aggregate demand shock, all the
three endogenous variables increase; and finally, after a positive cost-push shock, output falls
while inflation and the nominal interest rate increase. These sign restrictions are summarized
in Table 1.

Table 1: Sign restrictions for the hypothetical

SOEs
Shock T Y
Monetary policy shock - - 4+

Aggregate demand shock + o+ o+
Transitory supply-side shock — + +

Note: The sign refers to the impact response of the variable of
interest due to a structural shock. A ‘+” (or °-’) indicates that
Oxt/Ovjy > 0 (or < 0), where x; is the variable of interest
and v ¢ is the structural shock studied.

We now investigate whether we can recover the true impulse responses to a monetary
policy shock using the two sets of identifying assumptions analyzed in this paper. To organize

the analysis, we split our discussion in the following questions:

1. When the timing of the assumed identifying restrictions corresponds to the timing of
the DGP, are the true impulse responses identified? What is the effect of adding exoge-

nous variables in the performance of each set of identifying assumptions?

2. When the timing of the assumed identifying restrictions does not correspond to the
timing of the DGP, which identification approach has the worst performance? Which

one is more robust when the timing of the DGP is unknown?
We now provide answers to these questions.

3.2.1 When the timing is correct

Let us focus first on exclusion restrictions. The first row of Figure 2 displays the actual
impulse responses to a monetary policy shock issued by the lagged information economy
(red plain line), along with the 68-th percent confidence interval of the simple VAR (dashed

lines) and the VAR with exogenous variables (light blue area) issued by exclusion restrictions.
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Notice that the VAR with exogenous variables performs remarkably well in this case. In fact,
adding the block-exogenous (foreign) variables to the VAR not only substantially shrinks
uncertainty, but it is also crucial to fully recover the transmission of the shock under exclusion
restrictions. In contrast, the simple VAR fails to deliver responses for output and inflation

significantly different from zero along the whole horizon.

Figure 2: When the timing of the identifying assumptions is correct
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of the VAR without foreign variables, while the blue light areas display the said bands for the VAR with foreign variables.

Now we turn to sign restrictions. The second row of Figure 2 shows the true responses

of a DGP with contemporaneous information (red line with circles), along with the 68-th
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model-uncertainty bands from the SVARs with standard sign restrictions. Recall that these
bands show a subset of responses generated with matrices Ay, so that &, = A,v; and A
fulfills the imposed signs. To select these matrices, we followed Algorithm 1, and selected a
K = 50 per draw. As it was the case with exclusion restrictions, the VAR with exogenous
variables displays more precise bands than the simple VAR, especially for output. However,
it is worrisome that the sign-identified responses of inflation are larger in absolute value than
those of the actual DGP, especially on the impact period. In the case of the nominal interest
rate, the sign-identified responses are actually smaller as compared to the DGP. Kilian and
Murphy (2012) notice that there are cases in which standard sign restrictions imply implau-
sible responses of certain variables of interest. The reason is that we chose the sign of the
impact responses, but we do not limit their magnitude. Thus, without any prior information
other than the required signs, models that imply large responses are considered equally likely
as those that imply small responses.!* For the case of the oil market, Kilian and Murphy
(2012) put a restriction on the price elasticity of oil supply so that it rules out sign-identified
matrices Ay that generate economically implausible responses of the oil supply to oil price
shocks. As a result, the set of plausible sign-restricted SVAR models shrinks substantially,
and that helps to better represent the dynamics of the oil market, as argued by Kilian and
Murphy.

In our particular case, let us consider a modified sign restrictions approach augmented
with an elasticity bound on the impact response of inflation. For practical matters, the elas-
ticity bound should be determined using information from observed data. Consider, thus, the
following regression

Amy = By + B, Aiy + B, DiAiy + wy, (11)

where w; is an ARMA(p,q) process with white noise innovations, and D, = 1if Ai; X Amy <
0, and zero, otherwise. The dummy variable registers changes in inflation and the interest rate
of opposite signs, which is likely to happen after a monetary policy shock. The interest-rate
elasticity of inflation, conditional on changes of opposite signs, is thus given by 5~ = [3,+5,;.
In our simulated samples, 5~ < 0. Therefore, as a rule-of-thumb, we impose an elasticity

bound on the impact response of inflation after a contractionary monetary policy shock of the

14Kilian and Murphy (2012) argue that the cost of remaining agnostic about the precise values of the structural
parameters is that the data are potentially consistent with a wide range of structural models that are equally
admissible, since they all satisfy the identifying restrictions. Without further assumptions, there is no way of
knowing which of these models is most likely.

17



form
Blj)werAit < Aﬂ-t < 07 (12)

where the subindex lower indicates the 95-th percent lower bound of coefficient 5, or the
most negative value on its confidence interval. This inequality restriction is a soft one, since
we give a range of responses to inflation that seem plausible given the observed data. In
addition, we take the lower bound of 3~ since the regression equation 11 may present a bias
due to endogeneity (the short-term interest rate may react to current changes in inflation)
and the omission of other variables that affect inflation; therefore, 5~ might not be precisely
pinned down by its point estimate Bf. For simplicity, we opted to run regression (11) on a
large simulated sample of 10,000 observations for each DGP, and we then imposed the cor-
responding f3;,.,.-bound to each sub sample.!> The results of this exercise are depicted in
the last row of Figure 2. The improvement in terms of accuracy of the sign-identified re-
sponses with an elasticity bound is remarkable, not only for inflation but also for the nominal
interest rate. With the proposed correction, the true responses of the DGP lie well inside the
68-th model-uncertainty bands. Notice as well that the simple VAR with augmented sign
restrictions plausibly identifies the shock, a result that contrasts with the case of exclusion
restrictions.

The elasticity-bound constraint of the augmented sign restrictions procedure generates
important changes to the posterior distribution of impulse responses of the sign-identified
SVARs. On the technical appendix, Figure A.1, we compare the distribution of the impact
response of output, inflation, and the nominal interest rate to the monetary policy shock issued
by the standard and augmented sign restrictions. In the top panel, the distributions come from
an individual random draw from the posterior distribution of structural parameters, while the
bottom panel shows the posterior distribution of closest-to-the-median models, issued by
Algorithm 1. The bound constraint on the SVAR-based interest-rate elasticity of inflation
tilts rightwards the distributions of all variables, not only inflation. Also, the size constraint
induces a more precise inference about the responses of the nominal interest rate, which

becomes clearly positive and closer to the actual DGP, as Figure 2 shows.

Effect of adding exogenous variables. In Section B of the technical appendix, we use a

simple example to show that, when the correlation between foreign and home innovations is

5Tn our regressions, we found that an ARMA(2,2) in w; ensures that the innovations of regression (11) are
white noise. The bounds imposed in the augmented sign restrictions are 3;,,,.,. = .5 when the DGP is the
contemporaneous information economy, and 3;_,, .,. = .2 when the DGP is the lagged information economy.
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different from zero, the estimated variance-covariance matrix Qj of the simple VAR is biased.
The latter implies an important handicap for the exclusion restrictions approach, since its
identifying power relies only on the information contained in this matrix. In contrast, sign
restrictions add extra information (precisely, the theoretically robust signs) to the candidate

matrices Aj; this extra information helps identifying the shock, despite the bias in Qj.

Figure 3: Effect of adding different foreign variables in the VAR
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Note: The plain line and the line with circles represent the actual DGP of the economy, corresponding to the lagged in-
formation environment and the contemporaneous information environment, respectively. The dashed lines show the 68-th
uncertainty bands for the impulse responses of the VAR without foreign variables, while the blue light areas display the said
bands for a VAR with all foreign variables, the green triangles for a VAR with only foreign output, and the crosses for a VAR
with foreign inflation and the foreign nominal interest rate.

In the context of our hypothetical small open economies, Figure 3 shows that the accuracy
of the estimated impulse responses improves the most when we add foreign output instead of
foreign inflation and/or the foreign nominal interest rate. The reason is that foreign output is
highly correlated with home output (with a coefficient of about 80 percent), and so it contains
the most relevant information about the correlation between foreign and home reduced-form
innovations. In contrast, foreign inflation and the foreign nominal interest rate contain less
useful information regarding the correlation between foreign and home reduced-form inno-

vations.
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3.2.2 When the timing is incorrect

Now we turn to the case in which the timing of the DGP differs from the implied timing of
the identifying restrictions. We describe first the results from exclusion restrictions. The first
row of Figure 4 shows that, when the DGP corresponds to the contemporaneous information
economy, exclusion restrictions not only miss the impact responses of output and inflation,
but also artificially delay the peak responses of these variables for a few periods. In addition,
exclusion restrictions in this environment do not rule out the presence of a price puzzle, even
though the actual DGP contains none. Jddskeld and Jennings (2011) find similar results in
their analysis. Finally, the performance of the simple VAR substantially worsens when the
timing mismatches that of the DGP, particularly for output.

The second and third rows of Figure 4 show the impulse responses of the DGP with
lagged information, and the model-uncertainty bands for sign-identified responses in such
an environment. Once more, standard sign restrictions deliver a poor fit with respect to the
true impulse responses. In contrast, the elasticity-bounded or augmented sign restrictions in
row 3 display narrower and reasonably close-to-target responses, especially the VAR with
exogenous variables. Notice as well that the peak responses of output and inflation are not
delayed, and a price puzzle is correctly ruled out.

Next, we test which set of identifying restrictions is farther away from the actual DGP
when we vary the timing of the true impulse responses. We focus on the SVARs with ex-
ogenous variables identified through exclusion restrictions and augmented sign restrictions.
The top panel of Figure 5 displays, in row 1, the DGP with lagged information and, in row
2, the DGP with contemporaneous information. The light blue area represents the uncer-
tainty bands for exclusion-identified responses and the dotted lines denote the said bands for
augmented-sign-identified responses. As the figure shows, the more accurate procedure is
the one that matches the timing of the DGP in place. But how badly do the identifying re-
strictions perform when they mismatch the timing of the DGP? This question is tackled by
the second panel of Figure 5, which shows on the left picture the distribution of the total root
mean squared error (RMSE) of each set of identifying assumptions across the 1,000 simu-
lated samples for each of the two DGPs considered. The picture confirms that, when the
identifying restrictions match the timing of the DGP, they attain a lower RMSE, on average.
However, notice that the distribution of augmented sign restrictions is actually quite similar
regardless of the DGP in place, while that of exclusion restrictions differs substantially. The

latter means that, when the timing of the DGP is unknown, the expected RMSE of exclusion
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Figure 4: When the timing of the identifying assumptions is incorrect
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restrictions increases faster with the probability of misspecifying the timing of the DGP than
the expected RMSE of augmented sign restrictions. In other words, augmented sign restric-
tions are overall robust in terms of accuracy. This claim is shown graphically on the bottom
right picture of Figure 5.

To summarize, the controlled Monte Carlo experiments illustrate three points. First, the
two set of identifying assumptions can potentially recover the true impulse responses to a
monetary policy shock when they match the timing of the actual DGP. In this context, the
accuracy of sign restrictions strengthens substantially when we include an elasticity bound
on the responses of variables that otherwise would seem implausibly large, as was the case
for home inflation. Second, adding exogenous variables is crucial for exclusion restrictions
to identify the shock, while not so for sign restrictions. In general, however, adding foreign
variables reduces the uncertainty bands in both approaches. And third, the augmented sign

restrictions approach is more robust when the timing of the actual DGP is unknown.

4 Application with Mexican data

In this section, we apply the identifying assumptions discussed above to study the effects
of a monetary policy shock in Mexico.'® We compare thus exclusion restrictions (in their
Cholesky-recursive form), with sign restrictions with and without a bound on the interest-rate
elasticity of inflation. We show that several of the features introduced in the last section are
present in the estimations with Mexican data. For instance, we show that exclusion restric-
tions register the smallest and most delayed peak responses of inflation, and do not discard
the presence of a price puzzle. In contrast, sign restrictions reduce the chances of a price
puzzle substantially, and reflect, in general, more stable responses than exclusion restrictions,
regardless of whether we include or not the block-exogenous variables to the VAR. Finally,
augmented sign restrictions discard implausibly large responses of inflation on the impact

period.

6Mexico is a fine example of a small open economy. Its degree of openness (i.e., the ratio between [export +
imports]/GDP) scores an average of 44 percent in the sample period studied. The main trading partner of Mexico
is the U.S., where over 80 percent of the Mexican exports are sold. Further, Mexico is about 9 times smaller
in terms of annual GDP than its North-American neighbour. Given these characteristics, it seems reasonable to
assume that the U.S. business cycle affects that of Mexico, but not vice versa. Finally, the correlation between
the Mexican output gap and the U.S. output gap is of about 86 percent for the sample period considered.
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4.1 Data and estimation of the reduced-form VARs

The home data we use to estimate both the simple VAR and the VAR with exogenous vari-
ables are a measure of the home output gap, core CPI inflation, producer price inflation, the
real exchange rate, the short-term interest rate, and money growth. We decided to include
producer price inflation, which measures the prices of intermediate goods, to mitigate the so
called “price puzzle” usually present in monetary SVARs when using exclusion restrictions
(see Sims and Zha, 2006; Christiano et al., 2005). We included money growth to provide
the system with more information about the monetary transmission mechanism. Section C
of the technical appendix describes in detail each of these variables and their properties. Our
sample period spans from January 2001 to March 2014, at a monthly frequency. We start
our sample in 2001 because Chiquiar et al. (2010) show that Mexican inflation became sig-
nificantly less persistent from that year onwards, once the Mexican central bank (Banxico)
adopted an inflation-targeting regime. The change in policy strengthened the convergence of
inflation towards the central bank’s target of 3 percent, which was officially set for the year
2003 and thereafter.!” In view of these facts, we decided to remove changes in trend inflation
induced by the convergence episodes. We opted for a simple strategy to compute trend infla-
tion, denoted by 7;, as we extracted the low frequency component of inflation through an HP
filter.'® To maintain a long-term equilibrium consistency with all nominal variables, we also
remove trend inflation from producer prices, the nominal interest rate, and money growth.!”

The set of detrended home variables is portrayed in Figure 6, and summarized in vector Y; as

Output gap Yt — Yt
Inflation gap Ty — Ty
v — Producer price inflation gap | -7 (13)
* ™ | Real exchange rate depreciation | Ag; '
Nominal interest rate gap i — Tt
i Money growth gap | | Amy — 7, |

17 According to Banco de México’s Quarterly Inflation Report for June-September 2000, the inflation goal
for 2001 was set to 6.5 percent; for 2002, it was 4.5 percent; and finally, for 2003, the Bank introduced its
medium-term target of 3 percent.

18We set A equal to 129, 600, as proposed by Ravn and Uhlig (2001) for monthly data. As an alternative, we
also explored the Stock and Watson (2007) unobserved-variable method to extract trend inflation. The results
do not change much using the two methodologies, so we chose the simplest one for the ease of exposition.

In a standard New Keynesian model with trend inflation, as in Ireland (2007), Cogley et al. (2010), or
Christiano et al. (2014), all nominal variables, such as prices, nominal interest rates, and wages, grow in the
long-term at their equilibrium level, which is proportional to trend inflation.
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For the block-exogenous variables, we include two U.S. variables and one world variable,
given by a measure of the U.S. output gap, the PCE inflation rate, and the CRB spot-price
inflation, which accounts for fluctuations in the price of world-traded commodities.?’ We
decided not to remove trend inflation from PCE and CRB inflation rates, since the trend in
both variables is flat for the sample period studied. Further details on these variables can be
found in Section C of the technical appendix. The set of foreign variables is displayed as well

in Figure 6, and is summarized in vector Z; as:

US output gap yt =y
Zy = US inflation = e
CRB inflation rate merd

Figure 6: Detrended data used in estimations
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Note: All domestic variables were extracted from INEGI and Banco de México, except for GDP, that was computed as in Elizondo (2012).
For U.S. variables, we used the FRED2 database, while we gathered the CRB index from Bloomberg. For some variables we extracted a
low frequency component. For the output measures, we used the HP filter for each variable. For domestic core inflation, producer price
index inflation, the nominal interest rate, and money growth, we used the trend of core inflation as computed by the HP filter.

200ur results are robust to adding the fed funds rate to the VAR. We decided to exclude this variable here
because the fed funds rate has been near its zero-lower-bound since the end of 2008, and has therefore become
uninformative since that date.
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We estimate both the simple VAR and the VAR with exogenous variables through maxi-
mum likelihood, where we use 3 lags for each VAR.?! We compute the joint distribution of
parameters of the VARs, I';(©,) for j € {s, e}, using bootstrapping as in Runkle (1987),
or Dupaigne and Feve (2009). This approach is suitable for small samples.?> We denote as
I';(8;) the bootstrapped estimate of I';(©,). We also checked that our estimated parameters
@j lead to globally stationary VARs models for the sample period studied (the details are in
Section C of the technical appendix). Finally, notice that a VAR with detrended variables is
a good approximation of a DGP like the one described in Section 3.1. The reason is that, in
the long term, all detrended variables and those stated in gap terms should be stationary.?* In
addition, Fry and Pagan (2011) argue that a VAR with stationary variables is the appropriate
summative model to identify transitory shocks such as a monetary policy shock, an aggregate

demand shock, or a cost-push shock.?

4.2 Results with exclusion restrictions

We ordered home variables just as shown in equation (4.1), which implies that, under the
recursive assumption, neither the home output gap, CPI inflation, producer price inflation, or
the real exchange rate contemporaneously react to the monetary policy shock. This order-
ing assumption is recurrent in the literature and it is founded on the principle that economic
activity variables take time to adjust to nominal disturbances.? In contrast, the nominal in-
terest rate and money growth react on impact to the shock. Figure 7 shows the 68-th percent
confidence bands of the impulse responses of home variables to a contractionary monetary

policy shock, identified using the estimated matrix Qj for the simple VAR (dashed lines) and

2I'The SIC and AIC information criteria suggest one and two optimal lags, respectively. Hatemi and Hacker
(2009) propose to use a LR test to set the optimal lags when the above criteria disagree. In this context, the
optimal lag order thrown by the LR test is three.

22In Section D of the technical appendix, we estimate the simple VAR with bayesian methods and show that
the differences with bootstrapping are minimal.

2See also Canova and De Nicol6 (2002), pp- 1134, who argue that, given a small sample, tests for integration
and cointegration may have low power. In such a case, it is reasonable to be guided by economic theory, which
points to the variables that are likely to be stationary under standard assumptions.

24Further, Fry and Pagan (2011) argue that, when one aims to identify both transitory and permanent shocks
at the same time, the appropriate summative model is a VECM. The reason is that a permanent shock supposes
a unit-root in the variables studied. As we do not aim to identify permanent shocks, a VAR with detrended
variables is the appropriate summative model for our framework.

Z3For the real exchange rate, the ordering assumption is more debatable, since the former will tend to move
with the nominal exchange rate, which reacts quickly to changes in monetary policy in economies with a floating
regime. However, we have checked that changing the ordering of the real exchange rate, so that it responds to
the monetary policy shock on impact, does not alter our main results.
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Figure 7: Exclusion restrictions with Mexican data
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Note: The dashed lines show the 68-th confidence interval bands for the impulse responses of the VAR without foreign
variables, while the blue light areas display the said bands for the VAR with foreign variables. The order of the variables in
the Cholesky decomposition is the same that the one that appears in the graphs.

Qg for the VAR with exogenous variables (light blue area). To compute these bands, we used
2,000 draws from the bootstrapped joint distribution of the corresponding VAR, i.e., f](éj)
for j € {s,e}. The effect on the real exchange rate, the nominal interest rate, and money
growth in both VARs is quite similar. Namely, the exchange rate appreciates?® with a pe-
riod delay, while the short-term nominal interest rate increases at impact, and money growth
oscillates around zero. However, for output and prices the differences are more important.
Through the lens of the simple VAR, the home output gap even increases few months after
the shock, while core CPI inflation responses are not significant and fluctuate around zero.
The VAR with exogenous variables importantly shrinks the confidence band for the home
output gap, which now features a significant but moderate fall in the aftermath of the shock.
Similarly, core CPI inflation now significantly falls in a hump-shaped pattern, reaching its
peak effect within 6 months after the shock. Interestingly, exclusion restrictions do not rule
out the possibility of a price puzzle.

Similar to Section 3.2, we observed that adding the block-exogenous variables to the

VAR is crucial for a plausible identification with recursive restrictions. The reason is that the

26We take the convention that a fall in the real exchange rate indicates an appreciation.
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estimated matrix Qj is biased, which pollutes the only information used by the simple VAR

to identify the shock (see Section B of the technical appendix). In contrast, the estimated
A ~ A A\l 4

matrix Q¢ = H+€),,, (Qn) (2,c includes a correcting term that accounts for the covariance

between home and foreign innovations (i.e., ),.), which improves accuracy and the ability

of exclusion restrictions to provide a plausible identification.

4.3 Results with sign restrictions

Sign restrictions do not require any variable ordering to identify the monetary policy shock.
We impose sign restrictions for the home variables’ responses only in the impact period to
three types of shocks: a monetary policy shock, an aggregate demand shock, and a transitory
aggregate supply shock. Although we care just about the first shock, Canova and Paustian
(2011) show that identifying more shocks increases the performance of sign restrictions. The
imposed signs, which are robust across a great variety of models,?’ are summarised in Table
2.

Table 2: Sign restrictions for the Mexican VARs

Shock Y Ty T? Aqt it Amt
Monetary policy shock - - 7?7 - 4+ -
Aggregate demand shock + + + - + ?
Transitory supply-side shock + — — + 7 ?

Note: The sign refers to the impact response of the variable of interest due to a structural shock.
A+’ (or *-’) indicates that Oz /Ovj ¢ > 0 (or < 0), where x; is the variable of interest and
vj,¢ is the structural shock studied.

Accordingly, after a contractionary monetary policy shock, home output gap, core CPI
inflation, and money growth fall, the real exchange rate appreciates, and the nominal interest
rate increases. We remain agnostic for producer price inflation and impose no restrictions;
notice that the unrestricted response in this variable will give us important information about
the likely reaction of core CPI prices. For a positive aggregate demand shock, output, core
CPI and producer price inflations, and the nominal interest rate increase, the real exchange
rate appreciates, and we impose no restrictions on money growth. Finally, for a positive

aggregate supply shock, output increases and the real exchange rate depreciates, while core

?7See Section 3.1 and Figure 1, and also Gali and Monacelli (2005), or Canova and Paustian (2011).
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CPI and producer price inflations fall, and we remain agnostic on the responses of the nominal
interest rate and money growth.

The above identifying assumptions suffice for an approach based on standard sign restric-
tions. However, we are also interested in ruling out implausible large responses of core CPI
inflation on impact, so we add a size restriction as the one introduced in Section 3.2. For an
identification based on these augmented sign restrictions, we ran a regression of changes in
core CPI inflation on contemporaneous changes in the short-term nominal interest rate, as in
equation (11). We assumed an ARMA(1,2) model for the error term of this regression to en-
sure that its innovations are close to white noise. We found a point estimate of B - = —.035,
while the lower bound of its 95 percent confidence interval equals 3,,,,, = —.7 (which
shows that the elasticity is not precisely estimated). Thus, for a contractionary monetary
policy shock, our augmented sign restrictions require the signs of Table 2 plus an elasticity
bound for the impact response of core CPI inflation of the form Bl_owerAit < Am <0.

Figure 8 displays the 68-th percent model-uncertainty bands for the simple VAR (dashed
lines), and the VAR with exogenous variables (light blue area). The top panel displays the
responses issued by standard sign restrictions and the bottom panel those produced by aug-
mented sign restrictions. The intervals were computed for 2,000 draws from T';(;) for
j € {s,e}. For each draw, we followed the Algorithm 1, and selected a K = 100. We
effectively searched for 200,000 matrices .4, that fulfill the restrictions, but we kept only
2,000 that were closest to the median for each draw of fj (@]) Overall, it is striking that the
responses issued from the VARs with and without foreign variables are remarkably similar,
except for the home output gap. In this case, adding the set of block-exogenous variables to
the VAR shrinks the model-uncertainty bands substantially. This result was expected since
home and foreign output gaps have a correlation of .86 in the observed sample. Thus, foreign
output contains important information to correct the bias in Q.. Also notice that the mone-
tary policy shock seems plausibly identified, as core CPI inflation significantly falls for a few
periods (output does so with humped-shaped pattern in the VAR with exogenous variables),
the real exchange rate strongly appreciates on impact, and producer prices, for which we did
not impose any restrictions, fall on impact and return to their initial state after a few months.

Notice that the peak responses of CPI inflation from standard sign restrictions differ from
their counterparts with augmented sign restrictions. For the former, the impact response of
CPI inflation corresponds to the peak response, a feature that seems hard to reconcile with the

vast literature of monetary SVARSs. In particular, the standard-sign-identified SVARs yield a
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Figure 8: Sign restrictions with Mexican data
(STANDARD SIGN RESTRICTIONS)
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Note: The dashed lines show the 68-th model-uncertainty bands for the impulse responses of the VAR without foreign
variables, while the blue light areas display said bands for the VAR with foreign variables.
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median interest-rate elasticity of inflation on impact (i.e., Am;/Ai;) equal to -2.5 and -2 for
I,(6,) and I'.(6,), respectively. However, in the data, the lower bound of this elasticity was
found to be equal to -.7, i.e., around 3 times smaller in absolute value than the median of the
standard-sign-identified SVARs. When we add the elasticity bound to the augmented sign
restrictions, the median interest-rate elasticity of inflation falls to around -.35 in both types of
VARs. As a consequence, the peak response of CPI inflation in the augmented-sign-identified

SVARSs happens within 6 months after the monetary policy shock, and not at impact.

4.4 Comparison across identifying assumptions

Figure 9 compares the 68-th percent uncertainty bands for the responses issued from different
identifying assumptions applied only to the VAR with exogenous variables. In the top panel,
we compare exclusion restrictions (light blue area) with augmented sign restrictions (dotted
lines). After a couple of periods, all variables respond in the same direction under the two
approaches. However, the quantitative differences are substantial. Notably, exclusion restric-
tions find smaller responses for output, CPI inflation, producer price inflation, and the real
exchange rate as compared to augmented sign restrictions. In contrast, the responses of the
short-rate interest rate are larger under exclusion restrictions, while money growth responses
look similar under the two types of identifying restrictions.

Regarding CPI inflation, three remarks are in order. First, the dynamics of inflation under
exclusion restrictions are somewhat more persistent than under augmented sign restrictions.
Second, the peak response under exclusion restrictions achieves a maximum of 5 basis points
after an increase of around 50 basis points in the nominal interest rate, both changes in annual
terms; for augmented sign restrictions, the maximum peak response is three times larger,
for an increase of just 15 to 20 basis points in the nominal interest rate. And third, under
augmented sign restrictions, a price puzzle occurs with lower probability than with exclusion
restrictions, and for shorter time too. Interestingly, two of these facts are reminiscent of the
second row in Figure 5 of our Monte Carlo experiment in Section 3.2. The first and the
third remarks call for the case in which the timing of the DGP corresponds to the timing
of sign restrictions, i.e., when inflation reacts contemporaneously to changes in the nominal
interest rate. Also, under this case, the response of the nominal interest rate drawn from
exclusion restrictions is larger than under augmented sign restrictions. How likely is it that
CPI inflation reacts within the same period to changes in the monetary policy rate? Although

this is a question that goes beyond the scope of this paper, since we do not have the micro
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data on prices at hand, the responses of producer prices gives us an indication. Recall that
we gave no restrictions either of sign or of magnitude to this variable. Accordingly, under
augmented sign restrictions, producer prices fall within the impact period of the monetary
policy shock, and they do so with a high volatility. As the prices of raw inputs fall, it is likely
that there will be a limited pass through to consumer prices as well. However, notice that
augmented sign restrictions do not discard models in which CPI inflation does not answer on
impact to the monetary shock.

The bottom panel of Figure 9 compares the responses of standard sign restrictions (light
blue area) with those of augmented sign restrictions (again, the dotted lines). There are
only two important differences between these responses. The obvious one is that the impact
response of CPI inflation is muted under augmented sign restrictions; although, for the rest of
the horizon, the model uncertainty bands are essentially identical, ruled by the dynamics of
the data. The second difference happens with the nominal interest rate. Similar to the Monte
Carlo experiment, the sign-identified responses of the short-term interest rate were pushed

upwards when we ruled out implausibly large inflation responses.

4.5 Other studies with Mexican data

Gaytan and Gonzélez (2006) also measure monetary policy shocks in Mexico and study
changes in the monetary transmission mechanism after Banxico formally adopted inflation
targeting in 2001.2® In particular, Gaytan and Gonzilez use a regime-switching VAR model
and identify 3 regimes in the sample period from January 1994 to January 2005: a crisis
regime is associated to the periods around and after the Tequila crisis of 1994, and the Asian
currency crisis of 1997; a calm regime corresponds to the relative smooth periods that fol-
lowed the crises; and the third regime corresponds to inflation targeting. Then, for calm and
inflation-targeting regimes, the authors compute the responses of the real exchange rate, the
output gap, CPI inflation, inflation expectations, and the nominal interest rate to a monetary
policy shock through recursive restrictions. Despite the differences in periods and variables,
the responses found by Gaytan and Gonzélez are qualitatively similar to those presented in
our estimations with recursive restrictions. For instance, for the calm regime, the authors also

find that the peak responses of inflation happens within the first 6 months after the monetary

20Other studies also document changes in the monetary transmission mechanism after inflation targeting in
Mexico. See for instance Ramos-Francia and Torres (2006), Capistran and Ramos-Francia (2010), Chiquiar
et al. (2010), Garcia-Verdud (2006), and Cortés (2013).
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Figure 9: Comparison of identifying assumptions on VAR with exogenous variables
(EXCLUSION VS SIGNS WITH AN ELASTICITY BOUND)
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Note: In the top panel, the dashed lines show the 68-th confidence interval band for the impulse responses of the augmented-
sign-identified SVAR, while the blue light areas display the said bands for the exclusion-identified SVAR. In the bottom panel,
the dashed lines show the 68-th confidence interval band for the impulse responses of the augmented-sign-identified SVAR,

while the blue light areas display the said bands for the standard-sign-identified SVAR.
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policy shock.

In a related study, Sidaoui and Ramos-Francia (2008) document changes in inflation dy-
namics using the credit channel and the expectations channel of the monetary transmission
mechanism. In particular, they use a VAR model and a small-scale macroeconomic model,
and show that after 2001 changes in prices are no longer permanent after credit shocks. Sim-
ilarly, they show that a cost push shock exerts smaller second-round effects in the Mexi-
can economy after 2001. The results of Sidaoui and Ramos-Francia, although not strictly
comparable to ours, are complementary to our measurement of the monetary transmission

mechanism in Mexico in late years.

5 Conclusions

We have compared the robustness of two types of identifying restrictions for a monetary
policy shock applied to SOEs: exclusion restrictions and sign restrictions. Specifically, we
focused on Cholesky-type recursive restrictions, standard sign restrictions, and elasticity-
bounded or augmented sign restrictions. We set out a Monte Carlo exercise with simulated
data from a hypothetical SOE, in which we varied the timing of responses of the DGP, so that
it matched either the implicit timing of recursive restrictions or that of sign restrictions. Then,
we ran VARs with and without foreign variables, and identified SVARSs that either matched
or mismatched the timing of the actual DGP.

The lessons from our Monte Carlo experiments are the following. Exclusion restrictions
perform fine when their timing matches that of the DGP and all relevant foreign variables are
included in the VAR. However, exclusion restrictions perform poorly when they mismatch
the timing of the DGP, and they fail to identify the monetary policy shock when the VAR
omits foreign variables. In such a case, the exclusion-identified SVAR yields odd responses
for output and it does not discard a price puzzle for inflation, even if the actual DGP contains
none. On the other hand, standard sign restrictions systematically overshoot the responses
of inflation, and undershoot those of the nominal interest rate, as compared to the DGP. To
fix this caveat, and in the spirit of Kilian and Murphy (2012), we add a size restriction on
the first response of inflation after the shock, which we build after a simple regression that
estimates the contemporaneous interest-rate elasticity of inflation. As a result, the augmented
sign restrictions substantially improve accuracy, and prove robust to both the timing of the
responses of the DGP, and the set of foreign variables included in the VAR. Last, the SVARs
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with foreign variables always display thinner uncertainty bands for their impulse responses
than those issued by SVARs without foreign variables.

Finally, we also identify SVARs using Mexican data with exclusion, standard sign, and
augmented sign restrictions to document similarities with the Monte Carlo exercise. Remark-
ably, most of our results hold in the empirical application too.

For the sake of clarity, we have left out important questions from our analysis. For in-
stance, we have not studied how well the above identifying restrictions capture the effects
of foreign shocks on home variables, or how we can efficiently estimate VARs with block
exogeneity when the monetary policy regime changes over time, either at home or abroad.
We believe these questions are important for inflation-targeting SOEs, but as of now they are

beyond the scope of this paper. Nonetheless, we plan to study them in future research.
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Technical appendix

A The Baumeister-Hamilton critique

Baumeister and Hamilton (2014) point out that the () R procedure to generate sign-identified
models creates impulse responses that follow truncated Cauchy distributions. The reason is
that the orthonormal rotation matrix Q, used to compute the candidate model A = chol(Q)Q,
involves crossed-row restrictions that must be verified. That implies that while certain ele-
ments of 4 could take any values between 0 and +oo (or —o0), some other elements would
be inside an finite interval. In other words, the responses of some endogenous variables will
be restricted to be not only positive or negative, but also inside the interval (a,a). To show
this point precisely, the first row of Figure A.1 shows the responses of output, inflation, and
the nominal interest rate to the monetary policy shock in the impact period, resorted from
a random draw h from the Monte Carlo exercise of Section 3. In the figure, we show the
responses from standard sign restrictions and augmented sign restrictions computed from the
VAR with exogenous variables. For this example, we computed 10,000 sign-restricted mod-
els A to have a complete picture of the posterior distributions of impulse responses. Such
distributions are clearly truncated, regardless of the sign-restrictions procedure used. Further,
the truncation does not vanish even if we increase the number of observations by 50 times in
the Monte Carlo exercise (e.g., from 200 observations, as in the original exercise, to 10,000).
The second row of Figure A.1 shows the distributions of responses resulting from Algorithm
1, which are composed of the closest-to-the-median responses per draw, for all the 1,000
draws considered in the Monte Carlo exercise. Although Algorithm 1 does not alleviate the
finite-interval problem, it greatly moderates truncation in the distributions, which are now
close to normal. Further, Section 3.2 shows that the median of these distributions could po-
tentially be quite close to the true impulse responses, provided that relevant prior information

is given to the sign restrictions procedure.
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Figure A.1: Truncated distributions for a random draw and distributions resulting from Al-
gorithm 1
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B Bias in the estimated simple VAR

Consider a data generating process (DGP) with only one exogenous variable z; and two en-

dogenous variables contained in vector i, = [y1; y2:]":

2 = Dz +ny, (14)
ye = Ay + Bz + ey, (15)
> 1 0 O
(m> = Ax( t), where A= w; 1 1 |, (16)
Et Vi
Wo 1 -1

where D is a constant, A is a 2 X 2 persistence matrix, B = [b; bQ]' is a 2 x 1 vector, 1, and
& = [e1: £ are reduced-form innovations. In turn, v} and v; = [vy; vo;] are the structural
errors of the SVAR model with zero mean and with a variance-covariance matrix given by
the identity matrix, i.e., V (v;) = Isy3, where v, = [V} 1;]". Notice that the structural matrix
A implies that, when w; # 0 for j = 1, 2, the structural exogenous innovation v} affects each

element of €;, but neither of the structural shocks in v, affects 7, i.e.,

_ *
nt - Vta
*
Eit = Wil + Vig + Vo,
*
€t = Waly + Vg — V.

Further, since there is no serial correlation among the structural errors, all of the reduced-
form innovations are white noise. The variance-covariance matrix of the reduced-form error

vector &, = [n, &' is given by E {¢,£/} = Q, where®

QO = AA
1 w1 Wo
= w1 w% + 2 wiwsy
Wy Wiy w% + 2

Notice that the variance of the structural impulse responses, i.e. Var (Qy;y,,/0v}) , is propor-

tional to the variance of the structural errors, which is defined as

Var (v;) = A7 QA = L.

2This simple structure implies that the second moments of the reduced-form innovations are given by
E{n?} =1, E{nej} = wj, E{E?t} = w? 42, and E{eyye} = wiws.

42



An econometrician can find unbiased estimates for all the parameters (slopes and variances)
of the true DGP if and only if she estimates a VAR with exogenous variables with exactly the
same structure and the same variables included in system (14) — (15). However, assume for

the time being that the econometrician aims to estimate a simple VAR of the form
Yo = A%yr1 + €5, (17)

The econometrician ignores, thus, the block-exogenous structural shock v}, and proposes the

following identifying structure

) 1 1 i
e; = A%vi, with A° = and v} = Vit . (18)
Given the true DGP, the persistence matrix A® maps into A, and the error term ¢} = Bz, +
£, in particular € = bjzi—1 + ¢, for j € {1,2}. The latter implies that the variance-

covariance matrix of &; is given by:*
s s/ _ s
E{elel’ = Q

b2

TEtwi+2 28 4 ow
b Do rwit2 )
s twiws T T ws

Notice that the identifying matrix .A® has the same signs as the bottom-right block of matrix
A, and so the structural impulse responses computed from the VAR with exogenous variables
(i.e. Qysyn/0V;) and those computed from simple VAR (i.e., Oy, /Ov;") will have the same
signs, at least on impact. However, the variance of these responses may differ importantly due
to the mis-specification of the simple VAR. To see this, notice that the identification scheme

(18) implies that the variance of the structural shocks v is given by

Var (1) = (A°%)71Q°(A4¥)"", which yields
2 12
_ L Var(rp) R +el-uf
A\ EF et Var(ny) )
where
] bj 2 byb
Var (vj,) = > W +2) +2( s twiws ), and (19)
j:{LQ}
s b? 2 ble
Var (v3,) = Z 1_d2—|—wj—|—2 -2 1_d2+w1w2 . (20)
j:{l,Z}

Three remarks are in order.

%Notice that Var (z,) = 1.
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Remark 1. The simple VAR will deliver unbiased estimates of the persistence matrix A if
g, is a white noise process. In our simple example, this will be the case whenever z; is also

white noise, i.e. when d — 0. It is straightforward to show that, when |d| > 0, then

Oy =d ¢,y +77f

where ¢, = €}, — ¢;; and i = b;n,_,. In this case, the regressors and the error term of the
simple VAR will not be orthogonal with the endogenous variables (E {¢{'y;_;} # 0), and,

thus, the estimator A* will not converge to its true value A.

Remark 2. Even in the case where <} is a white noise, its second moments are different
from those of ¢;. In fact, by comparing the bottom-right block of matrix €2 with the elements
of 2° it is evident that there are biases due to the implicit presence of the exogenous variable
2z, in €. In particular, depending on the values taken by b, and b,, the covariances between the
reduced-form innovations in 2° can change their sign with respect to their €2 counterparts.
This is important because the bias in {2° can cause negative outcomes for an identification
strategy based on exclusion restrictions. This approach uses the Cholesky lower-triangular
decomposition of €2° to produce impulse responses. Let A° = chol (£2%) denote such a de-
composition. Since (2° and 2 are different, there is no guarantee that the impulse responses
computed through 2(* will be equal to those generated through 21 = chol (€2). Therefore,
impulse responses of endogenous variables generated through 2(° can be completely uninfor-
mative.

In our estimations with Mexican data, some elements of (2° differ from those of {2 by
a factor of 5 to 1, while we only observe one change of sign in the covariance of domestic
output and inflation. These distortions explain the stark difference in the Cholesky-based
impulses responses.

In contrast, sign restrictions reduce the distortions generated by the misspecified simple
VAR by modifying matrix 2°. As explained in Section 4, this methodology proposes to iden-
tify a matrix of the form A; = QLS(QZ)’ where QF is a random rotation matrix drawn in the
k-th iteration, so that (Q3)' Q5 equals the identity and A delivers the imposed signs in the
impulse responses. In the same vein, applying this methodology to a VAR with exogenous
variables delivers an identifying matrix A;, = A(Qy)’ so that the signs of A, and A; are the
same. This correcting property of sign restrictions will be more successful when either the

parameter values b; are small, or the correlation between 7, and €;, governed by the param-
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eters w;, is also small. In our estimations with Mexican data, the largest correlation found

between 7, and ¢, is about -.30, and it relates the CRB inflation with the real exchange rate.

Remark 3. If the correlation between the 1, and ¢, is small, then the confidence bands of
the structural impulse responses across VARs will be similar. In the case of sign restrictions,
the variance of the structural impulse responses in the simple VAR can be larger than in the
VAR with exogenous variables. This point is proven by equations (19) and (20), that state
the variance of the structural errors v3, in the simple SVAR. These variances depend on the
parameters w;, while in the true DGP the variance of v, is equal to 1 by construction. In case
w; and b; are small, we should observe that the impulse responses computed through sign
restrictions in the two VARs have similar uncertainty bands.

To see this point clearly, we use the system (14)-(16) to perform a Monte Carlo sim-
ulation, in which we set all of the parameter values so that the sign and zero restrictions
indicated in (16) are satisfied and the cross correlations between exogenous and endogenous
reduced-form errors satisfy the following values:*' p (n,,e1,) = —.2, p(n;,€2) = —.2, and
p (e11,€2¢) = .9, where the function p (-) denotes the correlation between any two variables.
The experiment consists in comparing the structural impulse responses of variable vy, to a
shock in the structural error vy, and v5,. We simulate 1,000 samples, each one with 153 ob-
servations (as in our sample set, although we used 200 periods as a burning sample) and
estimate both a VAR with exogenous variables with the same structure as in (19) — (20) , and
a simple VAR as in (17). We then apply the sign restrictions methodology to the two estima-
tions. The results of this experiment are depicted in Figure B.2, where the first row shows the
results for the VAR with exogenous variables and the second row for the simple VAR, where
two cases are presented. On the left, we present the case where 7, and ¢, are correlated. On
the right, we present the case where they are not correlated. The plain line is the true impulse
response elicited from the DGP of our example, while the dashed lines denote the median
and the 68-th percent model-uncertainty band for the SVARs impulse responses.

Notably, we observe that the median responses of the two SVARs are quite similar and do

31To calibrate our example, we ran a VAR with exogenous variables using the observations of the U.S. output
gap as the exogenous variable, and the Mexican output and inflation gaps as endogenous variables. We then
proposed a matrix A so that AA’ = , and sign and zero conditions imposed by equation (16) are fulfilled.

However, the signs for w; were set free. The resulting values are the following: d = 0, by = .13, by = 0,
8 _4 455 .53 —-.04

A= ( 61 2.8 ), and Q) = .53 77 —.02 | x 1073,
’ ’ —-.04 —02 .04
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a very good job in recovering the true responses of the DGP. Second, the uncertainty band for
the impulse responses of the SVAR with exogenous variables is quite tight, and it is actually
the same regardless of what the value of the correlation between 7, and ¢, 1s. Third, notice
that for the case in which p (1,,¢;:) # 0, the uncertainty band of the impulse responses for
the simple SVAR is quite large. In contrast, and as predicted by our example above, when we
set this correlation to zero, the uncertainty band of the simple SVAR decreases substantially

and converges towards the one of the SVAR with exogenous variables.

Summing up. Exclusion restrictions use the estimated variance-covariance matrix ) and
the ordering of variables as the crucial information to identify a structural shock. However,
when matrix €2 is biased due to a mis-specification or the omission of relevant exogenous
variables in the VAR, then the impulse responses gathered from the distorted matrix O might
be totally uninformative. A biased Q) is obtained in a simple VAR when the reduced-form
innovations are affected by the block-exogenous innovations. In contrast, the VAR with
exogenous variables computes an error variance-covariance matrix () that is unbiased. But to
obtain it, one must choose the appropriate set of block-exogenous variables that appear in the
true DGP of the system, which by definition is not observable.

In contrast, sign restrictions use, in addition to matrix Q, a set of auxiliary orthonormal
matrices Q that help achieving impulse responses coherent with the predictions of a rea-
sonable model of the DGP. Further, when the simple VAR features a biased matrix Q, the
instrumental matrices Q can help to correct this bias. The correction is more likely to be
successful when the contemporaneous correlation between foreign and domestic innovations
is small. Further, our Monte Carlo exercise shows that sign restrictions identify quite well the
true impulse response of the DGP as long as all endogenous variables are allowed to respond

to the structural shock.3?

C Details about the Mexican data used

All home variables were obtained from either INEGI (the Mexican National Bureau of Statis-

tics) or Banco de México, at a monthly frequency. To obtain the output gap, first we applied

3In our Monte Carlo exercise, exclusion restrictions fail by default because it is assumed that the identifying
matrix A in the DGP is not lower triangular. As a consequence, exclusion restrictions would impose a zero
restriction in the response of 41 to a shock in vo; when there is actually none.

46



Figure B.2: Bias in the simple VAR, a Monte Carlo simulation
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the methodology provided by Elizondo (2012) to estimate a monthly series for the logarithm
of GDP using as input INEGI’s IGAE index,* which measures activity in Mexico through
surveys. Elizondo (2012) interpolates the monthly GDP series through an algorithm based on
the Kalman filter, and shows that the estimated series fits the observed quarterly GDP quite
well.3* To finally obtain the output gap, we subtract from the logarithm of monthly per-capita

GDP its long-term trend as computed by an HP filter, adjusted to the monthly frequency.

Consumer and producer prices, money growth, and the output gap were seasonally ad-
justed. The quarterly GDP and monthly IGAE series were originally adjusted by INEGI. For
consumer inflation and money growth we used the Tramo method, while for producer price
inflation, a more volatile variable, we used Additive Census X12. Our results are not sensitive
to the method employed to seasonally adjust the above series. Finally, the nominal interest
rate and the real exchange rate were not seasonally adjusted. Figure 6 shows the detrended
variables used in the empirical application. For inflation and producer price inflation, we
used the month-by-month percentage change of the Core Consumer Price Index (inflacion
subyacente) and the National Index for Producer Prices excluding oil, respectively. We use
the core consumer price inflation because the headline inflation measure is more volatile and
subject to temporary shocks, like bad weather conditions on agriculture, that are beyond the
control of the Central Bank. Notice that we have detrended observed inflation by a measure
of trend inflation. The difference between these two variables denotes the inflation gap, as
defined by Cogley et al. (2010). We opted for a simple strategy to compute trend inflation,
denoted by 7, as we extracted the low frequency component of inflation through an HP filter.
We use a \ equals to 129, 600, as proposed by Ravn and Uhlig (2001).%

For the real exchange rate depreciation, we used the exchange rate parity with respect to
Mexico’s 21 main trading partners. This exchange rate is computed as: ¢ = (p*/p) x (e/e*);
e is the MXN/USD nominal exchange rate , e* is the exchange rate of world currency per
U.S. dollar, p is the consumer prices index in Mexico, p* is weighted average of consumer

prices of 21 countries, and q is the real exchange rate index.¢

3The IGAE acronym stands for Indice Global de Actividad Econdémica.

341n a robustness exercise, we use a measure the IGAE index and the Industrial Production index as alternative
measures of activity. All the results were qualitatively unaffected.

35As an alternative, we used the Stock and Watson (2007) unobserved-variable method to extract trend in-
flation. The results do no change much using the two methodologies, so we chose the simplest one for ease of
exposition.

36Source: International Financial Statistics, IMF and Banco de México.
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The short-run nominal interest rate is measured with the interest rate for Treasuries Cer-
tificates (Cetes) for 28 days. This rate is in annual terms. In our analysis, we transform this
interest rate in monthly terms. As money growth we use M2 as the monetary aggregate.

For consistency with the long-term equilibrium of the economy, we assume that the low
frequency component of all nominal variables (i.e., 7, 7}, iy, Am2;) is proportional to trend
inflation, and so we use this variable to detrend the rest of nominal quantities. We can see this
fact in a standard New Keynesian model with target inflation, as in Ireland (2007), Cogley
et al. (2010) or Christiano et al. (2014), it is the case that at the steady state producer price
inflation (i.e., the one of intermediate goods) equals consumer price inflation (i.e., the one
of final goods), which in turn must equal target inflation. In addition, the nominal interest
rate should be equal to the real interest rate plus target inflation. And, finally, in a model
with money-in-the-utility function, as in Ireland (2007), inflation should be equal to money
growth in excess, that is, after discounted for economic growth. Figure 6, shows that trend
inflation does a pretty good job in detrending the nominal variables.

U.S. variables are obtained from the FREDII database, while the commodity price index
is obtained from Bloomberg. For U.S. output we used an HP-filtered measure of the Indus-
trial Production Index; for U.S. inflation and the commodity price inflation we compute the
month-by-month percent change in the Personal Consumption Expenditure index, and the
CRB commodity price index, respectively. Notice that we do not deflate U.S. inflation using
a measure for trend inflation as the latter is practically invariant for the time period considered
(see Figure 6). As Ireland (2007) and Cogley et al. (2010) show, U.S. trend inflation peaked
in 1979, while it stabilized around 2 percent annually after 1995. For this reason, we also
chose not to deflate commodity-price inflation because of a similar reason.

We verified that our VARSs are stationary, as all roots lie within the unit circle (see Figure
C.4). In case roots are inside the unit-circle, then the VAR model is stationary. In contrast, if
at least one of the VAR roots is equal or larger than one, then the model is not stationary. In
such a case, certain results (such as the impulse-response standard errors) will not be valid.
In particular, the AR Roots test reports the inverse roots of the characteristic AR polynomial
(see Luetkepohl and Saikkonen, 2000), which in the case of the simple VAR has n X p roots,
and for the VAR with exogenous variables we have (n +m) x p.¥’

Finally, we perform the Ljung-Box Q test with 3 lags on each series of residuals of the

37 Additionally, we have made two joint unit-root tests (Levin, Lin & Chu and Breitung) in which it is assumed
that there is a common unit root. The tests were rejected, indicating that the variables included in our VARs are
stationary.
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VAR equations, with the null hypothesis of no autocorrelation. The only equation for which
the null is rejected is the one for the output gap. To do not reject the null, we need to
include 12 lags in the VAR, which would mean to over-estimate several parameters. However,
we have a relatively small sample (153 observations) for the number of parameters to be
estimated in such case (around 500). In addition, with this number of lags, the monetary
policy shock is not identified. We have to make a trade-off between identifying the shock or
do not rejecting the null. Further, we consider the LR test to choose the optimal lag in our

VARs models (see Canova, 2007; Chapter 4).

Figure C.3: Original data
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Note: All domestic variables were extracted from INEGI and Banco de México, except for GDP, that was computed as in Elizondo (2014).
For U.S. variables, we used the FRED2 database, while we gathered the CRB index from Bloomberg. For some variables we extracted a
low frequency component. For the output measures, we used the HP filter for each variable. For domestic core inflation, producer price
index inflation, the nominal interest rate, and money growth, we used the trend of core inflation as computed by the HP filter. In each graph,
the dotted line marks the beginning of the benchmark sample period, namely 2001M1-2013MO9.

D Bayesian VARs vs bootstrapping VARs with Mexican data

This section briefly shows that estimating the VAR either by bayesian methods or bootstrap-

ping yields very similar results. The exercise is performed only for the VAR without ex-
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Figure C.4: Inverse roots of AR characteristic polynomial
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Note: In case roots are inside the unit-circle, then the VAR model is stationary. In contrast, if at least one of the VAR roots is equal or larger
than one, then the model is not stationary. In such a case, certain results (such as the impulse-response standard errors) will not be valid. In
particular, our VARs are stationary, as all roots lie within the unit circle.
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ogenous variables. For the bayesian estimation, we used Gibbs sampling to find the joint

distributions of parameters and we consider a conventional inverse Wishart-Gaussian prior

on the reduced-form parameters and uniform prior on the rotation matrices to obtain the pos-

terior distribution of the impulse-response functions once the structural shock identification

strategy was applied. For the bootstrapping estimations, we followed the classic methodology

of Runkle (1987). Figures D.5 and D.6 present the comparison between estimating methods

for the exclusion restrictions and standard sign restrictions, respectively.

Figure D.5: Exclusion-identified SVARs with Mexican data: bayesian vs bootstrapping esti-

mations
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Note: The dashed lines show the 68-th uncertainty bands for the impulse responses of the VAR without foreign variables estimated through
bootstrapping, while the blue light areas display the same VAR estimated with bayesian techniques using a conventional inverse Wishart-
Gaussian prior on the reduce-form parameters.
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Figure D.6: Sign-identified SVARs with Mexican data: bayesian vs bootstrapping estimations
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