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Documentos de Investigación

Banco de México
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September 2013

La serie de Documentos de Investigación del Banco de México divulga resultados preliminares de
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En este trabajo estudio el proceso de difusión de choques permanentes de reducción de la
inflación en la economı́a mexicana utilizando series de precios desagregadas para 283 bienes
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1 Introduction

It is now well established that Mexico experienced a steady reduction in CPI inflation

during the second half of the 1990s. For example, Ramos-Francia and Torres Garcı́a

(2005) argue that the stabilization programs introduced during the aftermath of the 1994-

1995 crisis (preventing a situation of fiscal dominance) along with the steady transition

toward a system of inflation targeting allowed the Bank of Mexico to reduce inflation

from the 1995 post-crisis 51% level to a neighborhood of the long-run 3% inflation target

in recent years.1,2

Several empirical studies have provided estimates of the timing of the breaks that

Mexican inflation experienced in the late 1990s and early 2000s. Using quarterly percent

change in consumer prices, Capistrán and Ramos-Francia (2009) show that there was

decrease in average (or level) inflation in the first quarter of 1999. Moreover, this change

in the level was accompanied by a change in persistence, reduced from the period 1988-

1999 to the 1999-2007 period. Similarly, using monthly inflation, Chiquiar, Noriega, and

Ramos-Francia (2010) test for a change in persistence and find evidence for a change

from a non-stationary to a stationary regime between December, 2000 and April, 2001

for headline and core inflation, respectively.

However, since CPI is a weighted average of price indices for different goods and ser-

vices and across cities, these findings shed no light onto the process of structural change

or its determinants at the more disaggregated level. Moreover, by construction, it is hard

or even impossible to interpret these aggregate results; e.g. if a break was found, does it

mean that on average all prices experienced a break around the same date? If the answer is

1Yearly CPI inflation in 2012 was 3.57%.
2The official announcement that the Bank of Mexico would implement an inflation target system was

made in 2001. In 2002 the long-term 3% inflation target was set. A thorough description of the process can
be found in Ramos-Francia and Torres Garcı́a (2005).
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positive one may then hypothesize that a common shock caused the break. Alternatively,

it is likely that the timing and occurrence of a break was unevenly distributed across the

spatial and goods dimensions, in which case, the analysis of such distributions should

improve our understanding of the actual process of structural change.

In this paper I seek to establish the properties of persistence of the stochastic processes

followed by the rate of change of price indexes at the most disaggregated level possible.

The paper is descriptive in nature, and my aim at this point is only to collect several

facts about the process of structural change in an economy such as Mexico. To be sure,

I focus on “genéricos” , i.e. groups of goods and services with similar characteristics

that are the fundamental building blocks in the construction of CPI inflation. Using price

indices for this sample of 283 goods and services across 46 Mexican cities January 1995

to December 2012, I first test whether each of the micro data yearly inflation rates follows

a trend-stationary stochastic process with possibly multiple breaks and then estimate the

determinants of the diffusion process for both the estimated likelihood of experiencing a

break and for the corresponding timing. To clarify the language from the outset, I say

that a vector of stochastic processes {yc,t} follows a spatial diffusion if the correlation

between between two units c and c′ in two different time periods t and t′ is a function of

the Euclidean distance between the units.3

To motivate the study and to provide a first glimpse at the results, Panel A in Figure (1)

shows yearly CPI inflation rate for the period under study along with the corresponding

estimated break date, understood as a change in the trend function such that the resulting

process is stationary. The results are in line with those in the previous literature: Mexican

CPI inflation experienced a structural break — defined as a statistically significant change

in the parameters governing the trend function — between 2001 and 2002. Panel B,

3To be sure, if the function does not depend on time, the stochastic process is stationary on the time
dimension.
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however, displays the estimated kernel density of the timing of the breaks conditional on

experiencing a break, i.e. excluding all of the cases where I could not reject the hypothesis

of a unit root. It can be readily seen that there is considerable heterogeneity in the timing

of the breaks, and most importantly, on the actual occurrence of the event. In this paper I

first document this heterogeneity and later exploit it to understand the process of structural

change.

I first find that there is substantial variation in the likelihood and timing of structural

breaks at the micro data level. For those goods and services (across all cities) that expe-

rience a break, the earliest and latest breaks were estimated at the beginning of 1996 and

2012, respectively, i.e. spreading through the whole period under study. Interestingly, the

median estimated break date is a better approximation of the structural break found for

CPI inflation than the corresponding mean, i.e. it does not follow that the break date of an

average is the average of the corresponding structural breaks. For the remaining 20% of

goods and services I cannot reject the null hypothesis of a unit root against the alternative

of trend-stationarity with as many as ten breaks in the trend function.

Using the estimated likelihood and timing of structural change I then estimate regres-

sions akin to diffusion processes on the spatial and goods dimension. I find first that both

the likelihood and timing of the breaks are positively correlated on the spatial dimension,

implying, for example, that it is more likely for a particular good in a specific city to

experience a break if the same is happening for neighboring cities, i.e. consistent with a

spatial diffusion of (dis) inflationary shocks.

Since I lack an objective proximity measure for different goods I use two alternative

approaches: first, I control for core and non-core groups fixed effects using the goods and

services classifications elaborated by the Instituto Nacional de Estadı́stica y Geografı́a

(INEGI). In addition, I control for expenditure CPI weights. The most striking result
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here is the existence of an increasing and concave relation between the likelihood of a

break and the CPI weights, i.e. those goods and services that take a larger share of the

households’ consumption expenditure were more likely to experience a break. Moreover,

conditional on experiencing a break, these goods took longer to experience the structural

change. While I cannot identify supply and demand-side causation— i.e. whether the

break was caused by a change in household or firms behavior—, this finding is of some

interest and should be further investigated in the future.

Taken together, these results suggest that at least for this class of permanent changes,

inflation processes follow a diffusion on both the goods and spatial dimensions. Whether

this is true for transitory monetary shocks is unknown and left for future research.

Figure 1: Panel A plots yearly CPI inflation rate along with the estimated break date
(vertical, dotted line). Panel B plots a normal kernel density estimate for all good-city
couples, conditional on experiencing at least one structural break. See Section 3.
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The fact that inflation follows a diffusion process at the most disaggregated process

matters for the design of optimal monetary policy. One well known fact is that spatial

processes are characterized by a spatial multiplier that magnify individual shocks at the

aggregate level. A corollary is that the design of optimal monetary policy might be im-

proved by taking into account spatial dependencies that may affect the short or long-term

price-level target, or the duration of the short-term deviation from a transitory shock.

This paper touches upon several important themes in monetary economics and several

recent papers have pursued related objectives. There is now a well-established literature

on the microeconomic evidence on the frequency of price changes showing that, con-

trary to standard rigid-price models, there is considerable flexibility in price changes at

the micro-data level.4 The interest here lies on whether the assumption of sluggish ad-

justment or price rigidity used in New Keynesian monetary models has any empirical

support. Disaggregated CPI data has also been used to test other assumptions or results in

international monetary theory, such as the law of one price or the Balassa-Samuelson ef-

fect.5 A different strand of the literature seeks to improve the ability to forecast aggregate

inflation using microeconomic data.6 To best of my knowledge this is the first paper to

study the heterogeneous response of different goods and services at the micro level after

the implementation of an inflation targeting regime and to use it to investigate some of the

determinants of structural change in persistence.

This paper is organized as follows. In the next section I describe the data used in

the analysis of Section (3) where I describe the econometric test used to estimate the

likelihood and timing of structural break and estimate their corresponding determinants.

The last section discusses my results and concludes.

4A recent, up to date review of the literature can be found in Nakamura and Steinsson (2013). For the
specific case of Mexico see Gagnon (2009), Ysusi (2009) and Ysusi (2010).

5See Crucini and Shintani (2008) and Hernández Vega (2012), respectively.
6See, for example, Duarte and Rua (2007) and Ibarra (2012).
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2 Data

The main input in this paper is Mexican monthly CPI micro-data for the period January

1995 - December 2012. Since aggregate CPI inflation experienced a break around 2001

(Figure 1) it is convenient to use the same time period to explore the characteristics of

the process of structural break at the more disaggregated level. The data includes price

indexes for 283 categories for each of the 46 cities that are periodically surveyed to con-

struct the Mexican CPI by the INEGI. Each of these 283 goods and services categories

generally aggregate similar items and except for very specific cases cannot be considered

purely homogenous goods. In what follows I will denote by g and c each of the corre-

sponding goods and services categories and cities, and for convenience I will refer to the

former as goods or goods and services indistinctly, but the reader should bear in mind that

these also include services.

Spatially the data is collected from different establishments across forty-six cities in

the country. One may group these using the thirty two states or two regional classifications

that vary between four and seven regions.7

To present results I will use two alternative classifications for all goods: (i) the expen-

diture classification groups goods into 8 different categories that correspond roughly to an

aggregate household budget. The categories are: Food, Beverage and Tobacco, Apparel,

Footwear and Accessories, Housing, Furniture and other Household Goods, Medical and

Personal Care, Transport, Education and Entertainment and Other Goods and Services;

(ii) the standard core/non-core classification used by the INEGI to construct measures

of core and non-core inflation. To compute core inflation using the definition used by

7The four geographical regions are: North that includes the states of Baja California, Sonora, Chihuahua,
Coahuila, Nuevo León and Tamaulipas. Central North including Aguascalientes, Baja California Sur, Col-
ima, Durango, Jalisco, Michoacán, Nayarit, San Luis Potosı́, Sinaloa and Zacatecas. The Central region
includes Mexico City, State of Mexico, Guanajuato, Hidalgo, Morelos, Puebla, Querétaro and Tlaxcala; the
South includes Campeche, Chiapas, Guerrero, Oaxaca, Quintana Roo, Tabasco, Veracruz and Yucatán.
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the Bank of Mexico one excludes from the aggregate CPI calculation the goods in the

agricultural, concerted or administered and education subindexes.8 Table (1) presents de-

scriptive statistics using these categories for yearly and monthly inflation as well as for

the CPI weights used to compute the aggregate index (Equation 1):

CPIt =
∑
c,g

ωg,cPIg,c,t (1)

Using the expenditure classification, the larger group is the one corresponding to Food,

Beverage and Tobacco with 38.2% of all goods and services. In terms of the core/non-core

classification, 82% of all goods and services are part of the core component (Columns

2 and 3). Excluding missing values, out of 216 monthly price index observations the

average sample size is between 164 monthly observations (13.58 years) for the housing

category (Column 5) and 199 monthly observations for several categories.

8Torres Garcı́a (2003) presents a thorough discussion and description of several alternative core inflation
definitions.
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Average yearly inflation was highest for goods in the non-core component and small-

est for those in the housing category, and the range was also largest for non-core goods.9

Finally, the last four columns present descriptive statistics for CPI average weights which

will play a role later in the analysis. Note first that at the city level there are goods and

services with zero weight in the CPI. Also, the maximum is given to Own Housing in

Mexico City, and is in the order of 5%. The last column includes the aggregate weight

given to each category of goods and services. Core goods represent 78% of the aver-

age expenditure of Mexican households with Non-food Merchandise and Other Services

having the largest shares.

These CPI weights are estimated using expenditure data from the 2008 income and

expenditure household Mexican survey (ENIGH) in the 46 municipalities included and

correspond to the 2010 base in CPI calculation.10 To understand the results that follow

I have expressed the weights in percentage points, and to get an idea of the order of

magnitudes Table (2) shows sample quantiles and other descriptive statistics.11

Table 2: Descriptive Statistics for Rescaled Weights

Percentiles Statistics

10% 25% 50% 75% 90% Average Min Max

0.0001 0.0005 0.0014 0.0042 0.0127 0.0077 0 5.0297
Notes: Each column presents percentiles, average, minimum and maximum rescaled CPI
weights (%) using the latest 2010 base.

9Since the Mexican economy was in a disinflationary period at beginning of my sample, the minimum
inflation rates are all on the negative side.

10A thorough description can be found in Instituto Nacional de Estadı́stica y Geografı́a (2011).
11The largest weight is given to the Own Housing (“vivienda propia”) in Mexico City.
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3 Trend Stationarity and Structural Breaks

As explained in the Introduction, my aim is to test for non-stationarity (persistence)

against the alternative of trend-stationarity with multiple breaks. I will follow Kapetanios

(2005) who proposed the following model:

πg,c,t = µ0 + µ1t + ρπg,c,t−1 +

k∑
i=1

γi∆πg,c,t−i +

S max∑
i=1

φiDUi,g,c,t +

S max∑
i=1

ψiDTi,g,c,t + εg,c,t (2)

where πg,c,t is yearly inflation at time t for good g at city c, µ0 + µ1t denotes the trend

function, and DUi,g,c,t = 1(t > Tb,i,g,c) and DTi,g,c,t = 1(t > Tb,i,g,c)(t − Tb,i,g,c) denote

structural breaks in the mean and trend, respectively, with Tb,i,g,c the i-th (i = 1, · · · , S max)

structural break date for good g and city c. As is usual in Augmented Dickey-Fuller tests,

the above specification includes k lags of differenced necessary for the disturbance εg,c,t to

be white noise.

The null hypothesis of the test is H0 : ρ = 1, µ1 = φ1 = · · · = φS max = ψ1 = · · · =

ψS max = 0, and for any number of breaks m ≤ S max the alternative hypotheses are of

trend-stationarity with breaks, i.e. Hm : ρ < 1. The test statistic proposed by Kapetanios

(2005) is the minimum t-statistic for ρ over all possible sample partitions with up to m

structural breaks, i.e. τm
min = min{τ1, τ2, · · · , τm} and τi is the t-statistic that minimizes the

sum of squared residuals in the estimation of Equation (2) for up to i structural breaks.

Starting with one break the process evolves recursively by partitioning the sample in up to

m+1 subsets. Kapetanios (2005) provides critical values for τm
min at the 10%, 5%, 2.5% and

1% significance levels for m = 1, · · · , 5 and three different specifications of breaks in the

trend function: in Model A, he assumes that both the null and the alternative hypothesis

have ψ1 = · · · = ψS max = 0, i.e. he restricts the analysis to changes in the mean. Model B

10



allows only for changes in the slope of the trend function, i.e. φ1 = · · · = φS max = 0 and

Model C allows for a general change in the trend function as expressed in Equation (2).

In what follows I will only consider this last, more general alternative.

Before presenting the results several remarks about the implementation of the test are

in order. First, I allow for a maximum of ten structural breaks, i.e. S max = 10. Since

simulated critical values in Kapetanios (2005) only allow for up to five structural breaks

I extended the simulation in his paper to allow for up to ten breaks.12 The critical values

used are presented in Table (A1) in Appendix A.

Second, before conducting the tests I also test for the joint presence of monthly sea-

sonality. If I cannot reject the null of seasonality using a conventional F-test I use the

residuals from this estimation, otherwise I use the original time series.13 Third, in what

follows I fix a significance threshold of 10%.

Finally, it is well known that the choice of the number of lags (k) in augmented Dickey-

Fuller tests may distort the size and power of the test (Ng and Perron (1995)). Since I

estimated up to S max = 10 structural breaks for all the (g, c) combinations, using stan-

dard information criteria would have been computationally demanding. For this reason

I selected several (g, c) cases and generally found that the AIC and BIC were monotoni-

cally decreasing for up to k = 15 lags; plotting the information criteria as a function of k

I found a large discontinuity at k = 12 lags, so in what follows I fix k to 12 lags.

Table (3) summarizes the results using both of the classifications described in the

12The choice of ten structural breaks is rather arbitrary. It will be seen below that results do not change
if a lower upper bound was imposed, since most disaggregated price indexes experienced less than three
breaks and the distribution is heavily concentrated on one and two breaks.

13As discussed in Kapetanios (2005), since the asymptotic distribution is not free of nuisance parameters
I decided to prefilter each time series for monthly seasonality. Nonetheless I have also simulated corre-
sponding critical values allowing for monthly seasonality under the alternative and the results remain the
same.
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previous section. For each category, the second (I(1)) and third columns give the frac-

tion of goods for which the test cannot reject the null and their corresponding aggregated

CPI weight, respectively, even after allowing for up to S max = 10 structural breaks. The

next column provides information on the average estimated autoregressive parameter ρ̂(m)

where m is the minimum number of breaks necessary to achieve stationarity if m ≤ S max

or for the case of no breaks whenever I cannot reject the null hypothesis of a unit root.

Conditional on being trend-stationary with breaks, the next ten columns provide frequen-

cies for each number of breaks. Finally, the last five columns provide summary statistics

of the estimated date of structural break using the mean, the median, the maximum and

minimum and the standard deviation (in months).

Starting with Panel A, for almost 20% of all (g, c) couples I cannot reject the null of a

unit root even after allowing for up to ten breaks in the trend function. In the construction

of CPI, these non-stationary cases represent 15% of the total weight, computed as the

sum of the CPI weights across the corresponding city-goods cases. Inflation for goods

and services in the Housing, Transport and Education categories is generally less likely to

be persistent, consistent with the finding that goods in the core classification are generally

more persistent than those in the non-core classification. Among the core goods, 21%

appear to be non-stationary, representing less than 13% of the total CPI share; 14% of

non-core goods are classified as non-stationary, representing less than 3% of all cases.14

Turning now to the trend-stationary subset of (g, c) couples, columns 4-5 show that in

the vast majority of cases one or two breaks in the trend are sufficient to obtain stationarity,

and one break is enough for almost 80% of all cases. Consistent with the previous finding,

stationary non-core goods are more likely to achieve stationarity after only one change.

The last five columns provide descriptive statistics on the distribution of estimated

14Since non-core goods are relatively more volatile this result may appear to be counterintuitive. In the
next section I will further explore and test the validity of this finding.
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break dates. First, this distribution is not symmetric: in general, the average break date

takes about a year more than the median break date, the latter being closer to the estimated

break for yearly data. This finding suggests an answer to one of the questions posed in

the introduction: while CPI is an average of disaggregated prices, the break in aggregate

inflation is closer to the median break than to the average break. The earlier break dates

are found at the beginning of 1996, and the later were estimated in the first half of 2012.

Moreover, the distribution exhibits considerable variation: conditional on experiencing a

break the estimated standard deviation in the break is around 60 months (last column). To

understand this large standard deviation, it is instructive to remember that the distribution

is multimodal (Figure 1).

A complementary picture is obtained by focusing on the actual core/non-core classi-

fication in Panel B. Within the core classification, goods are slightly more persistent than

services, the main difference explained by the Education subgroup.

The non-core goods and services are generally less persistent, with the exception of

the eight (Table 1) Livestock goods. Moreover, I can reject the null of a unit root for all

of the 5 goods within the Energy subgroup, for which the distribution of changes is the

tightest of all with an estimated standard deviation of only 10 months. This result should

not come as a surprise given the regulated nature of goods within this category.15

15The five goods are electricity, gas (2 additional categories), and gasoline (2 additional categories).
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I will now go further in this analysis and try to understand some of the determinants

of the timing and likelihood of a break using regression analysis. To motivate the analysis

that follows, suppose that structural breaks across the (g, c) dimensions follow a diffusion

process, i.e. once a specific couple experiences a break its “neighbors” are more likely to

experience it too. While spatial diffusion can be approximated by some distance function

using geographical coordinates— say, the Euclidean distance between cities16— there is

no straightforward measure of proximity on the goods space. To tackle this problem I

use two alternative procedures: first, I include group fixed effects according to any of

the two classifications described in the previous section.17 Moreover, I also exploit the

distribution of CPI weights across goods and services by including linear and quadratic

terms of each corresponding weight.

Specifically, I will now estimate regression models for the estimated likelihood and

timing of a break, expressed as functions of corresponding CPI weights and the occur-

rence and timing of past breaks in neighboring cities, as well as group and cities fixed

effects:

tbg,c = α0 + α1ωg,c + α2ω
2
g,c + ρs

∑
c′,c

d̃g,c,c′tbg,c′ + X′g,cβtb + εg,c (3)

1[ρ̂ < 1|s = 10%]g,c = γ0 + γ1ωg,c + γ2ω
2
g,c + ρs

∑
c′,c

d̃g,c,c′1[ρ̂ < 1|s = 10%]g,c′

+X′g,cβur + ηg,c (4)

where the dependent variables are the natural logarithm of the estimated date for a

change in persistence for all goods-cities couples where a positive break was found (tbg,c)

16The Euclidean distance is computed using the median geographical coordinate for each city.
17I only report the results for the second, core-noncore classification. Results using the remaining fixed

effects are similar and are available from the author upon request.
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and 1[ρ̂ < 1|s = 10%]g,c is an indicator variable that takes the value one if I can reject

the null hypothesis of a unit root for couple (g, c) both using a 10% significance level

threshold. Moreover, ωg,c denotes each CPI weight (Equation 1), X includes a full set

of group and city fixed effects and to capture any degree of spatial correlation (ρs) I also

include the weighted average of each dependent variable across all neighboring cities,

where d̃g,c,c′ denote the normalized reciprocal Euclidean distance between cities c and c′

using the actual coordinates for all cities.18

Several remarks follow. First, since I have estimated up to ten structural breaks it is

unclear which date should be assigned to the actual break. In the results that follow I will

consider only those cases where I have estimated one structural break, i.e. all other cases

are classified as non-stationary. In Table (B1), Appendix B, I report the results where I

use the information on the ten structural breaks, and I assign the date of the last break

needed to achieve stationarity. It is shown that results are robust to this potential source

of misspecification, explained by the fact that the distribution of the number of the breaks

is heavily concentrated on the first two breaks.19

Second, I estimate two different models using Equation (3): Model A uses only the

sample of (g, c) couples where I estimated a positive date of change, i.e. those couples

that are trend-stationary with breaks and the time of break is assumed to be lognormally

distributed. In Model B I extend the analysis to the full sample of (g, c) couples and

estimate a normal Tobit censored model, where, by assumption the possibly unobserved

(log) time of change is tb∗g,c = min
{
tbg,c, t

}
and t corresponds to the (log) date of the last

18While there is some socioeconomic data at the city level that could in principle be used to control for
other unobserved city effects, it is usually available for only one time period or for time periods that need
not coincide with the timing of events used here. For this reason I am forced to used city fixed effects and
assume away any time varying city effects that may explain some of the results.

19Importantly, breaks are not chronologically ordered, so it does not generally follow that whenever there
are more than one structural break the estimated date takes place later than the first break, i.e. a priori this
does not impose any form on the distribution of break dates.
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observation in our sample, i.e. December 2012.20 Using the second equation I estimate a

linear probability model for the likelihood of experiencing a break.

Regarding the spatial autoregressive term, note first that closer cities have a stronger

effect on the average since the weights are (normalized) reciprocal distances. Second, the

spatial correlation coefficient ρs is not to be confused with the corresponding first-order

autoregressive parameter used in the tests above. Third, as discussed in the motivating

paragraphs I seek to estimate a spatial diffusion process, i.e. the causal effect that neigh-

boring cities have on each outcome. To attain this I follow the time series definition of

causality and take the weighted average only across those (g, c) couples that experienced

a break in the past. Notice that if ρs = 0 there is no correlation on the spatial dimension,

e.g. because all (g, c) couples experience a common shock. Whenever ρs > 0 there is

suggestive evidence that the timing of a break follows a diffusion process on the spatial

dimension; finally, the case of negative spatial correlation is harder to interpret, since for

each (g, c) couple, a later average neighboring break date would imply and earlier break

for that couple— implying spatial co-movement; alternatively, an earlier average neigh-

boring break date implies spatial disentanglement.

Because of the large number of controls, I present the results in separate tables. Re-

sults for the CPI weights and spatial determinants are presented in Table (4). Using the

restricted sample (Panel A), I first find that conditional on experiencing a break, the tim-

ing of breaks for different cities is negatively correlated. As discussed above, the case

of negative spatial correlation is hard to interpret, but a literal interpretation is that, for

a fixed radius, goods and services in cities within this radius we find both early and late

break dates, conditional on breaks taking place. Interestingly, I also find a monotone and

20Under a normality assumption for Model A (i.e. duration to a change in persistence is lognormally
distributed) Model B clearly nests Model A. Since I am not interested in estimating the marginal effect of
the regressors on the hazard function but only on the effect they have on the duration of change in persistence
this is not a problematic assumption (Wooldridge (2010)).
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concave relation between the timing of a break and CPI weights, i.e. conditional on ex-

periencing a break, goods that are relatively more important in the average household’s

budget experienced a break later. The fact that the relationship is concave implies that the

process of structural break is not unbounded, with a maximum around weights close to

3%.

Consistent with the hypothesis of a spatial diffusion process, when I use the full sam-

ple of (g, c) couples (Panels B and C) I find strong and positive correlation, both for the

timing and likelihood of a break. Moreover, I find that couples with higher CPI weights

were more likely to experience a break (Panel C) and this relationship is also concave.

The same result holds for the Tobit model (Panel B) once I include city fixed effects.

Before going on it is worth expanding on these findings. First, comparing results in

Panel A and B it is clear that constraining the sample has an important effect on the spatial

autocorrelation estimate. The fact that the likelihood of a break follows a diffusion process

(Panel C) helps understand these dissimilar results: if one specific (g, c) couple is more

likely to experience a break if other couples in proximate cities have already experienced

a break one should expect to have the timing of the breaks to also be positively correlated.

Interestingly, under this interpretation the causation is through the likelihood which then

implies correlation of the timing of the breaks. This shows the advantage of modeling the

break date as a latent variable— as opposed to restricting the sample to those couples that

have already a break.

It is also worthwhile speculating about the causes behind the estimated relationship

between CPI weights and the dependent variables. First, as Bénabou (1992) and Chirinko

and Fazzari (2000) have found, inflation and market power have been found to be posi-

tively correlated, a result consistent with the view that, as inflation increases, households

are more willing to exert effort searching for cheaper alternatives, potentially increasing
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the the degree of competition in industries with preexisting market power. As Figure 1

shows, the case of Mexico’s structural break considered here is one of a general move-

ment to a lower inflation, less persistent regime. By extending the previous observation

one may argue that, with lower general inflation, households will exert higher search ef-

fort precisely on those goods (and cities) that are relatively more important in their budget,

making it more likely to experience a break towards the low and stable-inflation regime.

The corresponding results obtained in Panel A would then be a case of sample selection.

Turning now to the group-fixed effects, and moving from right to left in Table (5) it

is interesting that relative to the excluded reference group Beverage, Food and Tobacco,

only the Education subgroup appears to be more likely to have experienced a break. More-

over, as shown in the last row, while relative to the non-core category those (g, c) couples

in the core classification are less likely to have experienced a break, this difference is not

statistically significant. Recall that Table (3) showed that a larger fraction of goods in the

core classification had not experienced a structural break, a result that appears to contra-

dict the finding that goods in the non-core category are more susceptible of experiencing

transitory shocks that make them more volatile.21 The result in Table (5) shows that the

difference is not significant once we control for spatial effects, for CPI weights and city

fixed effects.

21To be sure, there need not be a contradiction if higher volatility is the result of the higher variance of
weakly stationary time series. Nonetheless, a non-stationary time series with time-dependent variance will
appear to be more volatile, as in the case of an AR(1) unit root process.
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Table 4: CPI Weights and Spatial Autoregressive Coefficient

Panel A: Log Normal

(1) (2) (3)

SAR (ρs) -0.293*** -0.322*** -0.321***
(0.01) (0.01) (0.01)

CPI Weight (α1) 0.547*** 0.483***
(0.18) (0.18)

CPI Weight2 (α2) -0.099*** -0.086**
(0.04) (0.04)

Panel B: Tobit

(1) (2) (3)

SAR (ρs) 0.391*** 0.486*** 0.519***
(0.01) (0.01) (0.01)

CPI Weight (α1) -0.335 1.427**
(1.03) (0.7)

CPI Weight2 (α2) -1.917 -0.188
(1.29) (0.17)

Panel C: Linear Probability

(1) (2) (3)

SAR (ρs) 0.25*** 0.207*** 0.209***
(0.04) (0.04) (0.04)

CPI Weight (α1) 0.398** 0.402**
(0.15) (0.17)

CPI Weight2 (α2) -0.117** -0.119*
(0.06) (0.06)

Group Fixed Effects No Yes Yes
City Fixed Effects No No Yes
Notes: Panel A, B and C display estimates for the log normal (restricted
sample), censored normal (full sample) and linear probability models,
respectively, using Equations (3)-(4) as explained in the text. Standard
errors are in parenthesis with the following characteristics: in Panel
A I report FGLS random effects at the city level standard errors; in
Panel B I report the asymptotic covariance matrix and in Panel C FGLS
standard errors corrected for heteroskedasticity.
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In terms of the actual timing of the break, Panel B shows that controlling for city fixed

effects generates considerable variation in the results. Taking this latter specification as

the more general one, I find that Non-Food goods, Education services, Other Services and

Energy and Government Approved Fares experienced an earlier break, while Housing

services and non-core agricultural goods experienced a later break. It is also interesting to

find that relative to non-core goods and services (last two rows), Core goods experienced

a later break, even after controlling for each group fixed effect, spatial correlation and

CPI weights. This result is consistent with the lower (though statistically insignificant)

likelihood of experiencing a break found in Panel C.

Finally, restricting the attention to the subsample of (g, c) couples that have already ex-

perienced a break (Panel A), I find that relative to the reference group, Non-Food goods,

Housing services and Energy experienced a later break, while Education and non-core

agricultural goods experienced an earlier break, and these results are robust to a specifi-

cation that include or exclude city fixed effects.

It is also interesting to check for significant city fixed effects, as they might say some-

thing about the general direction of the shocks in the diffusion process. Table (B4) in

the Appendix presents the estimates and their corresponding standard errors, where the

excluded reference city is Mexico City. In 89%, 56% and 100% of the cases, respectively

for each model, there are no statistically significant differences in the timing or likelihood

of experiencing a break with respect to the capital Mexico City. After controlling for all

other factors, and using the results from the Tobit model, only 16% of the cities experi-

enced a break later than Mexico City, and 29% of the cities experienced it earlier. This

shows that there is no general diffusion pattern flowing from the center (and specifically,

Mexico City) to the periphery.

Overall these results show the following picture: first, except for Educational services,
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most goods are equally likely to experience a break once I control for CPI weights, spatial

effects and city fixed-effects. In terms of the timing of the breaks, I find that controlling

for city fixed effects has an effect only when I consider the extended sample, i.e. it shows

that there is considerable heterogeneity across states and groups, even after controlling

for everything else. Moreover, this heterogeneity disappears once I restrict the analysis to

the subsample of couples where a break has already been observed.
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Table 5: Determinants of Trend-Stationarity: Group Fixed Effects

Panel A: Log Normal Panel B: Tobit Panel C: Lin.Prob

(1) (2) (1) (2) (1) (2)

Core: Goods
Non-Food 0.047*** 0.047*** 0.165*** -0.418*** 0.005 0.005

(0.01) (0.01) (0.04) (0.05) (0.01) (0.01)
Core: Services

Housing 0.133*** 0.14*** -1.077*** 0.473*** -0.005 0.00
(0.03) (0.04) (0.15) (0.18) (0.03) (0.03)

Education -0.051*** -0.051*** -0.383*** -1.16*** 0.042** 0.043**
(0.02) (0.02) (0.1) (0.12) (0.02) (0.02)

Other Ss. -0.022 -0.022 0.227*** -0.141*** -0.001 0.00
(0.02) (0.02) (0.06) (0.07) (0.01) (0.01)

Non-Core: Agricultural
F&V -0.048 -0.04 0.466 1.15*** 0.007 0.017

(0.12) (0.12) (0.31) (0.35) (0.07) (0.07)
Livestock -0.332*** -0.324*** -0.534* 1.174*** -0.019 -0.011

(0.11) (0.11) (0.28) (0.32) (0.06) (0.06)
Non-Core: Other

Energy 0.942*** 0.951*** -0.821** -0.68* -0.026 -0.01
(0.13) (0.13) (0.33) (0.38) (0.07) (0.07)

Government 0.005 0.014 -0.846*** -0.61* -0.009 0.00
(0.12) (0.12) (0.32) (0.36) (0.07) (0.07)

Core (relative to Non-Core)
Core -0.174 -0.166 1.455*** 2.722*** -0.015 -0.007

(0.12) (0.12) (0.3) (0.34) (0.06) (0.06)
N 9314 9314 13156 13156 13156 13156
City FE No Yes No Yes No Yes
Notes: Panel A, B and C display estimates for the log normal (restricted sample), censored normal (full sample)
and linear probability models, respectively, using Equations (3)-(4) as explained in the text. Standard errors
are in parenthesis with the following characteristics: in Panel A I report FGLS random effects at the city
level standard errors; in Panel B I report the asymptotic covariance matrix and in Panel C FGLS standard
errors corrected for heteroskedasticity. The excluded reference groups are Beverage, Food and Tobacco and
the non-core groups. F&V denotes Foods and Vegetables, and Ss denotes services. In the State fixed effects
specification I excluded México DF.
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4 Discussion and Conclusion

My aim in this paper has been two-fold: first, by testing for multiple structural breaks

in the trend function using micro-data price indexes I show that there is considerable

heterogeneity in the timing and likelihood of a structural break. Second, I study the

determinants of the timing and likelihood of a break and show that if our aim is to improve

our understanding of price-setting dynamics one promising line of research is to use this

microlevel variation.

Several findings emerge from this approach. First, I show that both the likelihood and

the unrestricted timing of breaks display strong positive spatial autocorrelation, indicating

that for any given city, what happens in neighboring cities is of direct importance. When

I restrict the analysis to those cases where a break has already taken place I find that the

timing is negatively correlated at the spatial level, suggesting that while spatial variation is

important in explaining the global properties of the process, local conditions at the goods

level may partly explain the actual observed timing.

While proximity on the spatial axis is easily measured, there is no objective distance

function on the goods space that allows me to test for diffusion process on this dimension.

The avenue explored here is to use variation across groups of goods and household expen-

diture, as measured by CPI weights. The general finding is that cases with higher weights

were more likely to experience a break, and generally experienced the break later, relative

to those with lower weights. Interestingly, this relationship is also generally concave, i.e.

there are natural limits to the diffusion along this dimension.

Across groups, I find that only Education services were more likely to experience

a break (relative to Food, Beverage and Tobacco) but there are some other systematic

findings with the timing of events that suggest that the goods dimension also plays a role

in the diffusion process.
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Taken together these results suggest that this class of inflationary shocks follow a

diffusion process across the geographical and goods space. Whether this is true for other

shocks is uncertain and is part of a future research agenda that I discuss below. Before

doing I will first discuss one important implication for the design of monetary policy,

followed by a discussion of several potential drawbacks or shortcomings of the present

analysis.

That spatial dependence of disaggregated price data may turn out to be relevant for

the design of monetary policy can be seen from the well known fact that positive spa-

tial dependence generates a multiplier that magnifies individual exogenous shocks at the

aggregate level.22 A simple two-goods example will serve to illustrate.

Suppose that the aggregate price index is a weighted average of the prices of two

goods:

P = λP1 + (1 − λ)P2

P1 = α + ρP2 + ε1

P2 = α + ρP1 + ε2

Here α is taken to be a permanent (level) common effect, and the idiosyncratic shocks εi,

i = 1, 2 correspond to transitory effects. By solving P1 and P2 in terms of the exogenous

permanent and transitory effects and replacing these in the weighted average we obtain:

P =
α

1 − ρ
+ ε1

[
λ + (1 − λ)ρ

1 − ρ2

]
+ ε2

[
(1 − λ) + λρ

1 − ρ2

]

It is now easy to see that permanent and transitory effects are magnified whenever ρ ∈

22On spatial multipliers see Anselin (2003). Similar effects have been found in the literature on social
interactions and network effects. See e.g. Becker and Murphy (2000) or Glaeser and Scheinkman (2003).
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(0, 1). The corollary from this simple example is that taking into account the spatial

dependence matters from the perspective of the optimal monetary response by a Central

Bank.23

I now discuss several pitfalls from the methodology used. First, I consider only a

very specific type of shock one that is not really well understood, i.e. shocks that are

strong enough to generate a permanent break in the trend function of a stationary process.

Nonetheless one can easily imagine diffusion processes with only transitory effects. While

using the former has a clear advantage— permanent effects are more easily identifiable

— the latter may not only be more frequent but may also provide a deeper insight into the

price formation process.

Second, it is well known that OLS estimates of spatial autoregressive models are in-

consistent (e.g. Ord (1975) or Arbia (2006)). In this paper I have avoided this problem

by restricting the right-hand side spatial effect to all of those (g, c) cases that experienced

a break before the corresponding left-hand side observation, forbidding the simultaneity

problem that generates this type of inconsistency. Nonetheless, as a robustness check

I have estimated Models A and C using Maximum Likelihood methods common in the

spatial econometrics literature and results do not vary.24

Two additional sources of concern may arise by the use of a two-stage method where

in a first stage I estimate the timing and likelihood of a structural break, and these are

used as inputs in the second stage estimation of the determinants. First, one may argue

against the use of fixed significance threshold and the robustness of the results to different

choices (e.g. 10% against 5% or 1%). Second, the fact that the second stage uses estimates

as dependent and independent variables may create inconsistencies due to measurement

23Using a simple dynamic generalization where the relation depends on lagged values of the other prices
in the economy it can be easily shown that equilibrium steady-state values display this same positive spatial
multiplying effect, but also that the duration of temporary shocks is affected.

24Results are available from the author upon request.
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error.

Related to the latter, it is well known that the presence of additive measurement error

in the dependent variable does not generate inconsistent estimates as long as the error is

uncorrelated with the regressors. Here, however, the error comes from estimation, is not

additive— it appears inside a nonlinear function— and since I estimate the spatial auto-

correlation, it also appears as a regressor. Nonetheless, under certain standard regularity

conditions, the estimated break date is a consistent estimator of the true, unobserved,

break date so as the sample size (T ) grows the measurement error disappears yielding

consistent estimates.25

Related to the choice of a significance level the main tradeoff is between size and

power. A lower significance threshold makes it harder to reject the null hypothesis of

a unit root increasing the number of (g, c) cases that the test labels as non-stationary in

Model C, reducing the sample of finite break dates in Model A and increasing the number

of censored cases in Model B . It follows that a stricter choice of significance threshold

(say, 1%) increases the probability of a Type II error and lowers the probability of a Type

I error, so it is hard to evaluate the effects of this type of measurement error have on the

estimates.

To illustrate this, Table (B2) presents the first-stage results using a 5% significance

threshold. Several findings emerge: first, the fraction of goods found to be non-stationary

almost doubles, reaching now 37.6% of all goods and services. Second, the distribution

of the number of breaks becomes more evenly distributed, with up to six structural breaks

needed for at least 90% of all (g, c) cases that experienced a break to attain stationarity.

Third, the distribution of break dates becomes more concentrated at the beginning of the

25Strictly speaking, the estimated fractions λm ∈ (0, 1) defined by Tbm = λmT are consistent estimates
of the true unobserved fractions. See Bai and Perron (1998) that also allow for trending regressors. The
method proposed by Kapetanios (2005) is a generalization of the methods proposed by Bai and Perron
(1998).
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sample, as Figure (2) shows. Interestingly, the signs of the second-stage estimated coef-

ficient do not vary considerably using this restricted sample, but the linear and quadratic

CPI weights effects are generally not significant (Table B3).

Fifth, as shown in Table (2), the distribution of CPI weights is positively skewed due

to the relative large weights on some goods, possibly generating the highly significant

monotone, concave relation found. Three robustness checks were performed: first I ex-

cluded up to the 30% largest weights. Second, for Model A I estimated least absolute

deviation (LAD) model.26 Finally, I excluded Mexico City from the analysis. As can be

seen in Table C1 in Appendix C qualitatively my results do not change, showing that my

results are not driven by outlying observations.

I finally discuss potential avenues for future research. First, as this paper has shown,

exploiting the microlevel data variability may yield interesting insights into the price-

setting behavior in an economy. Here I have focused only on the persistence of the in-

flation processes but one may wish to study the systematic differences in seasonality and

even in the relative magnitude of estimates of persistence. One may also wish to study

more directly the differential effect that monetary policy has at the goods and services and

city levels.

26Models A and C were estimated by FGLS but a LAD estimator cannot be used with the linear proba-
bility model.
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Appendix A Critical Values used in Section (3)

Table A1: Critical Values for Tests of Up To 10 Structural Breaks

S max 1% 5% 10%

1 -5.450 -4.966 -4.698
2 -6.555 -6.005 -5.672
3 -7.299 -6.878 -6.559
4 -8.096 -7.590 -7.279
5 -8.909 -8.294 -7.962
6 -9.530 -8.852 -8.547
7 -10.155 -9.511 -9.177
8 -10.655 -9.997 -9.712
9 -11.234 -10.569 -10.146
10 -11.730 -11.016 -10.574
Notes: Table presents simulated critical values cor-
responding to Model C in Kapetanios (2005) for up
to S max = 10 structural breaks. Simulation was
conducted in Matlab using trimming parameter of the
sample equal to 0.05, 1000 simulations of standard
random walks with standard normal errors of size N =

250 as in the original simulations.
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Appendix B Additional Results

Table B1: Robustness: Results for up to 10 structural breaks

Panel A: Log Normal

(1) (2) (3)

SAR (ρs) -0.365*** -0.382*** -0.382***
(0.01) (0.01) (0.01)

CPI Weight (α1) 0.415** 0.318*
(0.18) (0.18)

CPI Weight2 (α2) -0.068* -0.005
(0.03) (0.04)

R2 0.56 0.6 0.6
N 9462 9314 9314

Panel B: Tobit

(1) (2) (3)

SAR (ρs) 0.153*** 0.372*** 0.057***
(0.01) (0.01) (0.01)

CPI Weight (α1) 1.125 -0.142
(0.93) (0.73)

CPI Weight2 (α2) -1.523 1.218***
(1.05) (0.17)

Loglikeli -23661.07 -24253.11 -25717.59
N 13156 12972 12972

Panel C: Linear Probability

(1) (2) (3)

SAR (ρs) 0.177*** 0.164*** 0.167***
(0.04) (0.04) (0.04)

CPI Weight (γ1) 0.379*** 0.235*
(0.13) (0.14)

CPI Weight2 (γ2) -0.11*** -0.086
(0.03) (0.03)

N 13156 12972 2972
Group Fixed Effects No Yes Yes
State Fixed Effects No No Yes
Notes: Panel A, B and C display estimates for the log normal (restricted
sample), censored normal (full sample) and linear probability models,
respectively, using Equations (3)-(4) as explained in the text. Standard
errors are in parenthesis with the following characteristics: in Panel
A I report FGLS random effects at the city level standard errors; in
Panel B I report the asymptotic covariance matrix and in Panel C FGLS
standard errors corrected for heteroskedasticity.
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Figure 2: Panel A plots yearly CPI inflation rate along with the estimated break date
(vertical, dotted line). Panel B plots a normal kernel density estimate for all good-city
couples, conditional on experiencing at least one structural break with a 90 and 95%
significance levels.
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Table B3: Second Stage Results With 95% Significance Level

LogNormal Tobit Linear Prob.

SAR (ρs) -0.134*** 1.497*** 0.424***
(0.02) (0.01) (0.04)

CPI Weight (γ1) -0.969 0.926 0.175
(1.18) (0.66) (0.16)

CPI Weight2 (γ2) 1.284 -0.06 -0.036
(2.29) (0.15) (0.03)

Notes: Table presents the estimated spatial and CPI weights marginal
effects for the case of first-stage estimation of timing and likelihood of a
break using 95% significance level.
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Table B4: Determinants of Trend-Stationarity: City Fixed Effects

LogNormal Tobit Linear Probability

Mexicali -0.007 1.357*** 0.049

(0.06) (0.22) (0.04)

Juárez -0.009 1.264*** -0.013

(0.06) (0.22) (0.04)

Tijuana -0.055 -0.173 0

(0.06) (0.22) (0.04)

Matamoros 0.04 -0.383* 0.015

(0.06) (0.22) (0.04)

La Paz -0.073 0.338 0.005

(0.05) (0.22) (0.04)

Acuña -0.037 -0.88*** 0.022

(0.05) (0.22) (0.04)

Culiacán -0.054 -0.29 0.04

(0.06) (0.22) (0.04)

Hermosillo -0.037 -0.775*** -0.005

(0.06) (0.22) (0.04)

Huatapambo -0.15** -0.305 -0.046

(0.06) (0.22) (0.04)

Tepic -0.06 -0.37* -0.051

(0.05) (0.22) (0.04)

Monterrey 0.019 1.098*** -0.014

(0.05) (0.21) (0.04)

Torreón 0.071 -0.674*** -0.019

(0.06) (0.22) (0.04)

Tampico 0.037 0.128 0.022

(0.06) (0.22) (0.04)

Chihuahua -0.011 -0.397* 0.027

Continued on next page
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Estimates for City Fixed Effects — Continued from previous page

LogNormal Tobit Linear Prob.

(0.06) (0.22) (0.04)

Monclova 0.04 0.745*** -0.015

(0.06) (0.22) (0.04)

Fresnillo -0.107* 0.106 -0.018

(0.06) (0.22) (0.04)

Jiménez -0.035 -0.296 0.052

(0.06) (0.22) (0.04)

Durango -0.036 -2.157*** -0.022

(0.06) (0.22) (0.04)

Morelia 0.072 -0.637*** 0.001

(0.06) (0.22) (0.04)

Guadalajara -0.005 -0.499** -0.022

(0.06) (0.22) (0.04)

León -0.037 1.157*** -0.04

(0.05) (0.22) (0.04)

San Luis Potosı́ 0.03 -0.353 -0.036

(0.06) (0.22) (0.04)

Aguascalientes 0.055 -0.721*** 0.033

(0.06) (0.22) (0.04)

Colima -0.128** 1.898*** -0.001

(0.06) (0.22) (0.04)

Jácona -0.003 -0.313 0.039

(0.06) (0.22) (0.04)

Cortázar 0.023 -0.343 0.032

(0.06) (0.22) (0.04)

Querétaro -0.057 -0.283 0.012

(0.05) (0.22) (0.04)

Continued on next page
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Estimates for City Fixed Effects — Continued from previous page

LogNormal Tobit Linear Prob.

Tepatitlán -0.032 0.034 0.007

(0.06) (0.22) (0.04)

Acapulco -0.003 -0.272 0.004

(0.05) (0.22) (0.04)

Puebla 0.003 -0.083 0.011

(0.06) (0.22) (0.04)

Toluca 0.056 -0.138 0.059

(0.05) (0.22) (0.04)

Veracruz 0.023 0.232 -0.003

(0.06) (0.22) (0.04)

Córdoba 0.032 0.03 0.008

(0.06) (0.22) (0.04)

Iguala 0.027 -0.583*** -0.004

(0.06) (0.22) (0.04)

Tulancingo 0.045 0.352 -0.029

(0.06) (0.22) (0.04)

Cuernavaca 0.039 -0.301 0.002

(0.06) (0.22) (0.04)

Tlaxcala -0.007 0.113 -0.003

(0.06) (0.22) (0.04)

San Andrés -0.079 -0.182 -0.024

(0.06) (0.22) (0.04)

Mérida -0.031 0.42* -0.013

(0.06) (0.22) (0.04)

Tapachula -0.009 -0.067 -0.027

(0.06) (0.22) (0.04)

Villahermosa -0.03 0.003 0.008

Continued on next page
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Estimates for City Fixed Effects — Continued from previous page

LogNormal Tobit Linear Prob.

(0.06) (0.22) (0.04)

Chetumal -0.062 0.293 0.018

(0.06) (0.22) (0.04)

Oaxaca -0.094* -0.495** 0.008

(0.05) (0.22) (0.04)

Campeche -0.009 -1.007*** 0.055

(0.05) (0.22) (0.04)

Tehuantepec -0.153*** -0.075 0.026

(0.06) (0.22) (0.04)

Notes: Table presents city fixed effects using as reference Mexico City. ***:

statistically significant at 1% level, **: significant at 5% level, *: significant at

10% level. Standard errors in parenthesis with the following convention: See

notes in Table (4).
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Appendix C Robustness Checks

Table C1: Restricted Results for Robustness Checks

Panel A: Robustness Check 1

Log Normal Tobit Lin.Prob
SAR (ρs) -0.378*** 0.719*** 0.177***

(0) (0.02) (0.05)
CPI Weight (γ1) 0.304* 0.829 0.238*

(0.18) (0.82) (0.14)
CPI Weight2 (γ2) -0.047 0.935*** -0.086***

(0.04) (0.19) (0.03)

Panel B: Robustness Check 2

Log Normal Tobit Lin.Prob

SAR (ρs) -0.419
(0.003)

CPI Weight (γ1) 0.338
(0.199)

CPI Weight2 (γ2) -0.052
(0.057)

Panel C: Robustness Check 3

Log Normal Tobit Lin.Prob

SAR (ρs) -0.396*** 0.377*** 0.175***
(0.00) (0.01) (0.04)

CPI Weight (γ1) 1.102*** 0.955 0.369
(0.32) (1.53) (0.28)

CPI Weight2 (γ2) -0.584 -0.185 -0.377
(0.39) (2.58) (0.42)

Notes: In Panel A I exclude all the (g, c) couples with weights on
the 30% upper tail of the distribution. In Panel B I estimate the Log
Normal model with a Least Absolute Deviation median estimator.
In Panel C I exclude Mexico City from the sample.
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